Applying Convolution Filtersin
OpenGL

Nathan Cournia

achatha@vr.clemson.edu

Clemson University

Computer Science Department Colloquium Series — p.1

s Apply convolution filters:
s On arbitrary OpenGL surfaces:
s Primitives(lines, points, polygons)
s lJextures
s Buffers

s In real time

Computer Science Department Colloquium Series — p.2

s Apply convolution via:
s Software
s OpenGLs imaging subset
s Vertex/Fragment programs

Computer Science Department Colloquium Series — p.3

Convolution is performed in the client
software

Gives the programmer complete control

Image data must be downloaded/uploaded
to/from HW

Slow
Error prone

Computer Science Department Colloquium Series — p.4

» Supported since OpenGL 1.2
s Convolution is performed through OpenGL

s Simple interface

s glEnable(GL_CONVOLUTION_2D)

s glConvolutionFilter2D(target,
iformat, w, h, format, type,
kernel)

Computer Science Department Colloquium Series — p.5

» Only operates on the frame buffer
» Generally not supported in HW

Computer Science Department Colloquium Series — p.6

Requires OpenGL 1.5

Uses vertex and fragment programs
Works with all primitives

Powerful

©e e e e e

Fast

Computer Science Department Colloquium Series — p.7

s Problem:

s Fragment programs process one
fragment at a time

s Need neighboring samples for current
fragment
& Solution:

s Pass In texture coordinates for
neighboring samples

Computer Science Department Colloquium Series — p.8

& Problem:
s Limited number of texture coordinate units

s GeForceFX cards only support 8 texture
coordinate units

s We need at least 9 units for a 3x3 filter

& Solution:

s Don’t think about texture coordinates
units as storing 8 coordinates

Computer Science Department Colloquium Series — p.9

s We only need 2 of the 4 components for
each texture unit to sample the texture

s Treat texture coordinate units as being able
to interpolate 4 « 8 = 32 values

» We can use other interpolated variables to
store more texture coordinates
s fragment.color.primary
s fragment.color.secondary
s efc.

Computer Science Department Colloquium Series — p.10

s We don't need 1 texture coordinate unit for
every 2 samples

& \We can reuse coordinates

Computer Science Department Colloquium Series — p.11

Wy, Ny | N | €, Ny
w |c| e

Wy, Sy | S| €S

» For a 3x3 filter, we only need 5 texture
coordinate units

Computer Science Department Colloguium Series — p.12

» Kernel weights can be passed in through
ocal variables

s Kernel weights can also be hard-coded into
the fragment program

» Separable filter simply require multiple
passes

Computer Science Department Colloquium Series — p.13

» Used to generate texture coordinate for
neighboring samples

I ARBvpl.0
OPTION ARB_position_invariant;

ATTRIB center = vertex.texcoord[0];

MOV
ADD
ADD
ADD
ADD
END

result.
result.
result.
result.

result.

texcoord[0],
texcoord[1],
texcoord[2],
texcoord[3],

texcoord[4],

center;

center, { 1, 0,

#center
O, 1 }; #east

center, { -1, 0, 0, 1 }; #west

center, { 0, 1,

®, 1 }; #north

center, { 0, -1, 0, 1 }; #south

Computer Science Department Colloquium Series — p.14

» Not really necessary (can be done in client
program)

» Notice vertex program add 1/-1 to texture
coordinate components
s Facilitated via
GL_EXT_texture_rectangle texture
target

Computer Science Department Colloquium Series — p.15

& Allows access to texture via coordinates In
the range [0, w], [0, h] where w, h are the
respective width and height of the image

s Appears to be the same extension as
GL_NV_texture_rectangle

s Limited wrap states
s Mipmaps can not be defined

Computer Science Department Colloquium Series — p.16

I TARBfpl.0
ATTRIB center = fragment.texcoord[0];

ATTRIB east = fragment.texcoord[1l]; #... west, north, south
PARAM w0 = program.local[0]; #kernel (nw,n,ne,w)

PARAM wl = program.local[1l]; # (c, e,sw,s)

PARAM w2 = program.local[2]; # (se,scale,bias,®)

TEX sample, center, texture[0], RECT; #center
MUL sum, sample, wl.x;
TEX sample, north, texture[0], RECT; #north

MAD sum, sample, w®.y, sum; #...
MOV_SAT result.color, sum; #output final color
END

Computer Science Department Colloquium Series — p.17

» 3x3 Laplacian Kernel

Computer Science Department Colloquium Series — p.18

Computer Science Department Colloquium Series — p.19

» 3x3 Smoothing Kernel

Computer Science Department Colloquium Series — p.20

Computer Science Department Colloquium Series — p.21

s Convolution in OpenGL is possible at
Interactive frame rates

s OpenGLs imaging subset convolution Is nice,
but requires expensive hardware

s Fragment programs make convolution highly
configurable and easy to use

Computer Science Department Colloquium Series — p.22

Is it possible to do convolution with 3D
Images? Does it make sense?

s What will GLslang bring to the table?

Computer Science Department Colloquium Series — p.23

	Motivation
	Methods
	Convolution in Software
	OpenGL's Imaging Subset
	OpenGL's Image Subset (cont.)
	Convolution via Programs
	Convolution: Fragment Program
	Fragment Program Texture Coords
	Texture Coordinates (cont.)
	Texture Coordinate (cont.)
	Texture Coordinate (cont.)
	Fragment Program Misc.
	Convolution: Vertex Program
	Convolution: Vertex Program (cont.)
	GL_EXT_texture_rectangle
	Fragment Program Example
	Edge Detection
	Edge Detection Results
	Smoothing
	Smoothing Results
	Conclusion
	Questions

