
Applying Convolution Filters in
OpenGL

Nathan Cournia

acnatha@vr.clemson.edu

Clemson University

Computer Science Department Colloquium Series – p.1

Motivation

Apply convolution filters:
On arbitrary OpenGL surfaces:

Primitives(lines, points, polygons)
Textures
Buffers

In real time

Computer Science Department Colloquium Series – p.2

Methods

Apply convolution via:
Software
OpenGL’s imaging subset
Vertex/Fragment programs

Computer Science Department Colloquium Series – p.3

Convolution in Software

Convolution is performed in the client
software

Gives the programmer complete control

Image data must be downloaded/uploaded
to/from HW

Slow

Error prone

Computer Science Department Colloquium Series – p.4

OpenGL’s Imaging Subset

Supported since OpenGL 1.2

Convolution is performed through OpenGL

Simple interface
glEnable(GL_CONVOLUTION_2D)

glConvolutionFilter2D(target,

iformat, w, h, format, type,

kernel)

Computer Science Department Colloquium Series – p.5

OpenGL’s Image Subset (cont.)

Only operates on the frame buffer

Generally not supported in HW

Computer Science Department Colloquium Series – p.6

Convolution via Programs

Requires OpenGL 1.5

Uses vertex and fragment programs

Works with all primitives

Powerful

Fast

Computer Science Department Colloquium Series – p.7

Convolution: Fragment Program

Problem:
Fragment programs process one
fragment at a time
Need neighboring samples for current
fragment

Solution:
Pass in texture coordinates for
neighboring samples

Computer Science Department Colloquium Series – p.8

Fragment Program Texture Coords

Problem:
Limited number of texture coordinate units
GeForceFX cards only support 8 texture
coordinate units
We need at least 9 units for a 3x3 filter

Solution:
Don’t think about texture coordinates
units as storing 8 coordinates

Computer Science Department Colloquium Series – p.9

Texture Coordinates (cont.)

We only need 2 of the 4 components for
each texture unit to sample the texture

Treat texture coordinate units as being able
to interpolate 4 ∗ 8 = 32 values

We can use other interpolated variables to
store more texture coordinates
fragment.color.primary

fragment.color.secondary

etc.

Computer Science Department Colloquium Series – p.10

Texture Coordinate (cont.)

We don’t need 1 texture coordinate unit for
every 2 samples

We can reuse coordinates

Computer Science Department Colloquium Series – p.11

Texture Coordinate (cont.)

wx, ny n ex, ny

w c e

wx, sy s ex, sy

For a 3x3 filter, we only need 5 texture
coordinate units

Computer Science Department Colloquium Series – p.12

Fragment Program Misc.

Kernel weights can be passed in through
local variables

Kernel weights can also be hard-coded into
the fragment program

Separable filter simply require multiple
passes

Computer Science Department Colloquium Series – p.13

Convolution: Vertex Program

Used to generate texture coordinate for
neighboring samples

!!ARBvp1.0

OPTION ARB_position_invariant;

ATTRIB center = vertex.texcoord[0];

MOV result.texcoord[0], center; #center

ADD result.texcoord[1], center , { 1, 0, 0, 1 }; #east

ADD result.texcoord[2], center , { -1, 0, 0, 1 }; #west

ADD result.texcoord[3], center , { 0, 1, 0, 1 }; #north

ADD result.texcoord[4], center , { 0, -1, 0, 1 }; #south

END

Computer Science Department Colloquium Series – p.14

Convolution: Vertex Program (cont.)

Not really necessary (can be done in client
program)

Notice vertex program add 1/-1 to texture
coordinate components

Facilitated via
GL_EXT_texture_rectangle texture
target

Computer Science Department Colloquium Series – p.15

GL_EXT_texture_rectangle

Allows access to texture via coordinates in
the range [0,w], [0, h] where w, h are the
respective width and height of the image

Appears to be the same extension as
GL_NV_texture_rectangle

Limited wrap states

Mipmaps can not be defined

Computer Science Department Colloquium Series – p.16

Fragment Program Example

!!ARBfp1.0

ATTRIB center = fragment.texcoord[0];

ATTRIB east = fragment.texcoord [1]; #... west , north , south

PARAM w0 = program.local[0]; #kernel (nw,n,ne,w)

PARAM w1 = program.local[1]; # (c, e,sw,s)

PARAM w2 = program.local[2]; # (se,scale ,bias ,0)

TEX sample , center , texture[0], RECT; #center

MUL sum, sample , w1.x;

TEX sample , north , texture[0], RECT; #north

MAD sum, sample , w0.y, sum; #...

MOV_SAT result.color , sum; #output final color

END

Computer Science Department Colloquium Series – p.17

Edge Detection

-1 -1 -1
-1 8 -1
-1 -1 -1

3x3 Laplacian Kernel

Computer Science Department Colloquium Series – p.18

Edge Detection Results

Computer Science Department Colloquium Series – p.19

Smoothing

1 2 1
2 4 2
1 2 1

3x3 Smoothing Kernel

Computer Science Department Colloquium Series – p.20

Smoothing Results

Computer Science Department Colloquium Series – p.21

Conclusion

Convolution in OpenGL is possible at
interactive frame rates

OpenGL’s imaging subset convolution is nice,
but requires expensive hardware

Fragment programs make convolution highly
configurable and easy to use

Computer Science Department Colloquium Series – p.22

Questions

Is it possible to do convolution with 3D
images? Does it make sense?

What will GLslang bring to the table?

Computer Science Department Colloquium Series – p.23

	Motivation
	Methods
	Convolution in Software
	OpenGL's Imaging Subset
	OpenGL's Image Subset (cont.)
	Convolution via Programs
	Convolution: Fragment Program
	Fragment Program Texture Coords
	Texture Coordinates (cont.)
	Texture Coordinate (cont.)
	Texture Coordinate (cont.)
	Fragment Program Misc.
	Convolution: Vertex Program
	Convolution: Vertex Program (cont.)
	GL_EXT_texture_rectangle
	Fragment Program Example
	Edge Detection
	Edge Detection Results
	Smoothing
	Smoothing Results
	Conclusion
	Questions

