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Motivation

Apply convolution filters:
On arbitrary OpenGL surfaces:

Primitives( lines, points, polygons)
Textures
Buffers

In real time
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Methods

Apply convolution via:
Software
OpenGL’s imaging subset
Vertex/Fragment programs
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Convolution in Software

Convolution is performed in the client
software

Gives the programmer complete control

Image data must be downloaded/uploaded
to/from HW

Slow

Error prone
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OpenGL’s Imaging Subset

Supported since OpenGL 1.2

Convolution is performed through OpenGL

Simple interface
glEnable(GL_CONVOLUTION_2D)

glConvolutionFilter2D(target,

iformat, w, h, format, type,

kernel)
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OpenGL’s Image Subset (cont.)

Only operates on the frame buffer

Generally not supported in HW
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Convolution via Programs

Requires OpenGL 1.5

Uses vertex and fragment programs

Works with all primitives

Powerful

Fast
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Convolution: Fragment Program

Problem:
Fragment programs process one
fragment at a time
Need neighboring samples for current
fragment

Solution:
Pass in texture coordinates for
neighboring samples

Computer Science Department Colloquium Series – p.8



Fragment Program Texture Coords

Problem:
Limited number of texture coordinate units
GeForceFX cards only support 8 texture
coordinate units
We need at least 9 units for a 3x3 filter

Solution:
Don’t think about texture coordinates
units as storing 8 coordinates
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Texture Coordinates (cont.)

We only need 2 of the 4 components for
each texture unit to sample the texture

Treat texture coordinate units as being able
to interpolate 4 ∗ 8 = 32 values

We can use other interpolated variables to
store more texture coordinates
fragment.color.primary

fragment.color.secondary

etc.
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Texture Coordinate (cont.)

We don’t need 1 texture coordinate unit for
every 2 samples

We can reuse coordinates
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Texture Coordinate (cont.)

wx, ny n ex, ny

w c e

wx, sy s ex, sy

For a 3x3 filter, we only need 5 texture
coordinate units
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Fragment Program Misc.

Kernel weights can be passed in through
local variables

Kernel weights can also be hard-coded into
the fragment program

Separable filter simply require multiple
passes
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Convolution: Vertex Program

Used to generate texture coordinate for
neighboring samples

!!ARBvp1.0

OPTION ARB_position_invariant;

ATTRIB center = vertex.texcoord[0];

MOV result.texcoord[0], center; #center

ADD result.texcoord[1], center , { 1, 0, 0, 1 }; #east

ADD result.texcoord[2], center , { -1, 0, 0, 1 }; #west

ADD result.texcoord[3], center , { 0, 1, 0, 1 }; #north

ADD result.texcoord[4], center , { 0, -1, 0, 1 }; #south

END
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Convolution: Vertex Program (cont.)

Not really necessary (can be done in client
program)

Notice vertex program add 1/-1 to texture
coordinate components

Facilitated via
GL_EXT_texture_rectangle texture
target
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GL_EXT_texture_rectangle

Allows access to texture via coordinates in
the range [0,w], [0, h] where w, h are the
respective width and height of the image

Appears to be the same extension as
GL_NV_texture_rectangle

Limited wrap states

Mipmaps can not be defined
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Fragment Program Example

!!ARBfp1.0

ATTRIB center = fragment.texcoord[0];

ATTRIB east = fragment.texcoord [1]; #... west , north , south

PARAM w0 = program.local[0]; #kernel (nw,n,ne,w)

PARAM w1 = program.local[1]; # (c, e,sw,s)

PARAM w2 = program.local[2]; # (se,scale ,bias ,0)

TEX sample , center , texture[0], RECT; #center

MUL sum, sample , w1.x;

TEX sample , north , texture[0], RECT; #north

MAD sum, sample , w0.y, sum; #...

MOV_SAT result.color , sum; #output final color

END
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Edge Detection

-1 -1 -1
-1 8 -1
-1 -1 -1

3x3 Laplacian Kernel
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Edge Detection Results
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Smoothing

1 2 1
2 4 2
1 2 1

3x3 Smoothing Kernel
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Smoothing Results
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Conclusion

Convolution in OpenGL is possible at
interactive frame rates

OpenGL’s imaging subset convolution is nice,
but requires expensive hardware

Fragment programs make convolution highly
configurable and easy to use
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Questions

Is it possible to do convolution with 3D
images? Does it make sense?

What will GLslang bring to the table?
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