L ua, k-d Treesand Boids

Nathan Cournia

achatha@vr.clemson.edu

Clemson University

Computer Science Department Colluguium Series — p.1

» Create a simple testbed app. to experiment

with the following:

s DLL loading

s EXxceptions

s Inheritance Chains
s Scripting

s Perform all world/entity logic
s Trigger events which call scripts

Computer Science Department Colluguium Series — p.2

s Motivation Continued

s Scene Graphs
s Have thousands of moving objects
s 100,000+ triangles
s Per-pixel lighting
s Support new hardware features
(fragment programs, VBO, etc.)

s Truly make everything data driven

s In the end have a series of objects that can
be plugged into existing code

Computer Science Department Colluguium Series — p.3

s But what will the app. actually do?
s Answer: Flocking

s But:
s Where’s the violence?
s Where’s the blood spray?

» New answer: Flocking with weapons

Computer Science Department Colluguium Series — p.4

& Create a non-interactive environment with
simple world/rules

» User provides scripts which allow the birds to
think

s User’s think() script function is given the
following:
s Bird information (position, velocity, etc.)
s List of friends In visual range
s List of enemies in visual range

Computer Science Department Colluguium Series — p.5

» User’s think() must return the following:

$

$

$

Heading in which to move
Desired speed

f the birds weapon should fire

s User shouldn’t have to worry about doing
complicated physics calculations or detecting
collisions

Computer Science Department Colluguium Series — p.6

Scripts can directly modify world state

s Restrict some scripts to manipulating only
parts of the world (avoid cheating)

& Scripts syntax must be easy to learn/use
Scripts must have low overhead
s |.e.don'tuse TCL

Computer Science Department Colluquium Series — p.7

s "Moon" In Portuguese.

s Powerful light-weight programming language
designed for extending applications

» Can also be used as a stand-alone language
s About 6000 lines of C!
s Grammar fits on less than a page!

Computer Science Department Colluguium Series — p.8

Dynamically typed
s Interpreted from bytecodes

s Automatic memory management (which the
programmer can control)

» Procedural language

Computer Science Department Colluguium Series — p.9

s Dynamically typed

» Only values have types (variables don’t)

& Types:
s Nil

s numbers (doubles be default)

s strings
s functions

s userdata (provided by host)

s tables

Computer Science Department Colluquium Series — p.10

» Associative Arrays
Can be treated like arrays

s Can be indexed with any value (even other
tables!)

» Table values can be any value (even
functions!)

s Leads to methods for object oriented
programming

Computer Science Department Colluquium Series — p.11

& About 30 functions

& Host can:
s Read/Write variable in Lua
s Call Lua functions

Lua can call registered host functions
& Host communicates with Lua via a stack

Computer Science Department Colluquium Series — p.12

s Easy to learn (not Lisp!)
» Fast (20 times faster than TCL)
» 20 times slower than C

& Golearn

Computer Science Department Colluquium Series — p.13

http://lua-users.org/wiki/TutorialDirectory

s |ua was designed to work with C

s How do we get Lua and C++ to work
together?

s We want to call C++ object methods from
Lua

s We can’t get the address of a method in an
object

s \We can get the address of a static method In
an object

Computer Science Department Colluquium Series — p.14

class lua_script {

public:

lua_script (void);

bool load(const std::string& filename);

bool run(entity *ent, const std::string& method);

bool add_function(const std::string& func, lua_CFunction f);
void close(void);

private:

static int set_velocity(lua_State *vm);

static int get_position(lua_State *vm);

lua_State *m_vm;

}s

Computer Science Department Colluquium Series — p.15

int lua_script::get_position(lua_State *vm) {
if(lua_gettop(vm) != 1) {

std::cerr << "error: getPosition(id)" << std::endl;

return 0;

int id = static_cast<int>(lua_tonumber(vm, 1));

entity *ent = world.get_entity(id);
if(!'ent) return 0;

lua_pushnumber (vm, ent->get_current()->position.x());

lua_pushnumber (vm, ent->get_current()->position.y());

lua_pushnumber (vm, ent->get_current()->position.z());

return 3;

Computer Science Department Colluguium Series — p.16

» User is able to get a list of friends/enemies
within a certain range

» 1000’s of moving objects In the scene
s Nearest neighbor problem

s Problem: Checking if each object is in range
will be to slow

s Solution: Use a spatial subdivision data
structure to help find neighbors

» Once we have neighbors, sort them into
friend/foe lists

Computer Science Department Colluquium Series — p.17

s Multidimensional binary tree

s ks the dimensionality of the search space

s Complexities:
s Insert: O(log n)
s Delete: O(log n)
s Optimization: O(n log n)
s Search optimized: O(log n)

s Search in an unoptimized tree usually visits

1.386 log,n nodes

Computer Science Department Colluquium Series — p.18

& Associated with each node Is a discriminator
[0, k — 1]

s All nodes on any given level of the tree have
the same discriminator
s For any node P, let | be DISC(P)
s Then for any node Q in LEFT(P),
Ki(Q) < K;j(P)
s Then for any node Rin RIGHT(P),
Ki(R) > K;(P)

Computer Science Department Colluquium Series — p.19

(100,100)

E(40,85) o e F(70,85)

B(10,70)
@
@

G(10,60)

A(50,50) @
e D(25,20)
C(80.,15)

(0,0)

DISC

Computer Science Department Colluguium Series — p.20

void kdtree<D,K,T,C>::insert(kdtree<D, K, T, C>::node*& tree,

T& data, size_t disc) {
if(!'tree) {
tree = do_insert(data, disc, NULL, NULL);
return;

int suc = m_compare(data, tree->data, disc);
if(suc < 0) {

insert(tree->left, data, next_disc(disc));
} else if(suc > 0) {

insert(tree->right, data, next_disc(disc));

Computer Science Department Colluguium Series — p.21

void kdtree<D,K,T,C>::neighbors(kdtree<D,K,T,C>::node* tree,

std::1ist<T>& results, T& data,

K distance) {
if(!tree) return;

K delta = m_compare.diff(data, tree->data, tree->disc);
if(delta < 0) {

neighbors(tree->left, results, data, distance);
if((delta * delta) < distance)

neighbors (tree->right, results, data, distance);
} else {

neighbors (tree->right, results, data, distance);
if((delta * delta) < distance)

neighbors (tree->left, results, data, distance);

Computer Science Department Colluguium Series — p.22

delta = m_compare.diff(data, tree->data);
if((delta * delta) < distance) {

results.push_back (tree->data);

Computer Science Department Colluguium Series — p.23

» Creating a generic k-d tree in C++ is simple

» \We must be able to determine Iif a node Is
less than or greater than another node given
a discriminate

» Use a templates and functors

Computer Science Department Colluquium Series — p.24

kdtree<size_t DIMS, class DT, class T, class SUCCESSOR>

struct vector3_successor {
int operator () (const math::vector3* lhs,
const math::vector3* rhs,

assert(dim < 3);

s

size_t dim) {

const math::vector3 &a = *lhs, &b = *rhs;

for(unsigned int i = 0; i < 3; ++i) {
unsigned int j = (i + dim) % 3;
ifC aC j) <b(Cj)) return -1;
ifC aC j) >b(C j)) return 1;

}

return 0;

Computer Science Department Colluguium Series — p.25

sn’t this slow? No!

~aster than the C equivalent: function
pointers (gsort)

s Why? Compilers can optimize the code In
the functor

& Over 600% faster!

Computer Science Department Colluguium Series — p.26

» Simulates the behavior of a group (herd,
school, swarm, etc.)

s Made up of individual autonomous agents
called boids

» Can be though of as a specialized particle
system

» Stateless algorithm

Computer Science Department Colluquium Series — p.27

s Algorithm is marked by four rules (steering
behaviors)

s Separation - Avoid crowding

s Alignment - Move in the same direction
local flock mates are moving

s Cohesion - Move towards the center of
the flock’'s mass

s Avoidance - Avoid obstacles, flock mates,
enemies

s Emergent Behavior

Computer Science Department Colluquium Series — p.28

Flocking Demo

Computer Science Department Colluguium Series — p.29

» Most of the things mentioned on the first
slide are not done

» |Is there a better way to compute the nearest
neighbor?

Running scripts through Lua is cheap, but
not free

s Add script scheduler.
Use OO In Lua.

Computer Science Department Colluguium Series — p.30

	Motivation
	Motivation (cont.)
	Monster Testbed App. Activate
	Master Plan = Violent Birds
	Master Plan (cont.)
	Scripting Goals
	Lua
	Lua Features
	Lua Types
	Lua Tables
	Lua's C Interface
	Lua's Conclusion
	Glue
	Glue Example
	Glue Example (cont.)
	Let's Be Friends
	k-d Tree
	k-d Tree Discriminator
	k-d Tree Example (k = 2)
	k-d Tree Insertion/Search
	k-d Tree Nearest Neighbor
	k-d Tree Nearest Neighbor (cont.)
	k-d Tree C++ Tangent
	k-d Tree Functor Example
	k-d Tree Example (cont.)
	Flocking
	Flocking Rules
	Flocking Demo
	Future/Conclusions/Questions

