
Lua, k-d Trees and Boids
Nathan Cournia

acnatha@vr.clemson.edu

Clemson University

Computer Science Department Colluquium Series – p.1

Motivation

Create a simple testbed app. to experiment
with the following:

DLL loading
Exceptions
Inheritance Chains
Scripting

Perform all world/entity logic
Trigger events which call scripts

Computer Science Department Colluquium Series – p.2

Motivation (cont.)

Motivation Continued
Scene Graphs

Have thousands of moving objects
100,000+ triangles
Per-pixel lighting
Support new hardware features
(fragment programs, VBO, etc.)

Truly make everything data driven

In the end have a series of objects that can
be plugged into existing code

Computer Science Department Colluquium Series – p.3

Monster Testbed App. Activate

But what will the app. actually do?

Answer: Flocking

But:
Where’s the violence?
Where’s the blood spray?

New answer: Flocking with weapons

Computer Science Department Colluquium Series – p.4

Master Plan = Violent Birds

Create a non-interactive environment with
simple world/rules

User provides scripts which allow the birds to
think

User’s think() script function is given the
following:

Bird information (position, velocity, etc.)
List of friends in visual range
List of enemies in visual range

Computer Science Department Colluquium Series – p.5

Master Plan (cont.)

User’s think() must return the following:
Heading in which to move
Desired speed
If the birds weapon should fire

User shouldn’t have to worry about doing
complicated physics calculations or detecting
collisions

Computer Science Department Colluquium Series – p.6

Scripting Goals

Scripts can directly modify world state

Restrict some scripts to manipulating only
parts of the world (avoid cheating)

Scripts syntax must be easy to learn/use

Scripts must have low overhead

i.e. don’t use TCL

Computer Science Department Colluquium Series – p.7

Lua

"Moon" in Portuguese.

Powerful light-weight programming language
designed for extending applications

Can also be used as a stand-alone language

About 6000 lines of C!

Grammar fits on less than a page!

Computer Science Department Colluquium Series – p.8

Lua Features

Dynamically typed

Interpreted from bytecodes

Automatic memory management (which the
programmer can control)

Procedural language

Computer Science Department Colluquium Series – p.9

Lua Types

Dynamically typed

Only values have types (variables don’t)

Types:
nil
numbers (doubles be default)
strings
functions
userdata (provided by host)
tables

Computer Science Department Colluquium Series – p.10

Lua Tables

Associative Arrays

Can be treated like arrays

Can be indexed with any value (even other
tables!)

Table values can be any value (even
functions!)

Leads to methods for object oriented
programming

Computer Science Department Colluquium Series – p.11

Lua’s C Interface

About 30 functions

Host can:
Read/Write variable in Lua
Call Lua functions

Lua can call registered host functions

Host communicates with Lua via a stack

Computer Science Department Colluquium Series – p.12

Lua’s Conclusion

Easy to learn (not Lisp!)

Fast (20 times faster than TCL)

20 times slower than C

Go learn Lua

Computer Science Department Colluquium Series – p.13

http://lua-users.org/wiki/TutorialDirectory

Glue

Lua was designed to work with C

How do we get Lua and C++ to work
together?

We want to call C++ object methods from
Lua

We can’t get the address of a method in an
object

We can get the address of a static method in
an object

Computer Science Department Colluquium Series – p.14

Glue Example

class lua_script {

public:

lua_script (void);

bool load(const std::string& filename);

bool run(entity *ent, const std::string& method);

bool add_function(const std::string& func , lua_CFunction f);

void close(void);

private:

static int set_velocity(lua_State *vm);

static int get_position(lua_State *vm);

lua_State *m_vm;

};

Computer Science Department Colluquium Series – p.15

Glue Example (cont.)

int lua_script ::get_position(lua_State *vm) {

if(lua_gettop (vm) != 1) {

std::cerr << "error: getPosition (id)" << std::endl;

return 0;

}

int id = static_cast <int >(lua_tonumber(vm, 1));

entity *ent = world.get_entity (id);

if(!ent) return 0;

lua_pushnumber(vm, ent->get_current ()->position.x());

lua_pushnumber(vm, ent->get_current ()->position.y());

lua_pushnumber(vm, ent->get_current ()->position.z());

return 3;

}

Computer Science Department Colluquium Series – p.16

Let’s Be Friends

User is able to get a list of friends/enemies
within a certain range

1000’s of moving objects in the scene

Nearest neighbor problem

Problem: Checking if each object is in range
will be to slow

Solution: Use a spatial subdivision data
structure to help find neighbors

Once we have neighbors, sort them into
friend/foe lists

Computer Science Department Colluquium Series – p.17

k-d Tree

Multidimensional binary tree

k is the dimensionality of the search space

Complexities:
Insert: O(log n)
Delete: O(log n)
Optimization: O(n log n)
Search optimized: O(log n)

Search in an unoptimized tree usually visits
1.386 log2n nodes

Computer Science Department Colluquium Series – p.18

k-d Tree Discriminator

Associated with each node is a discriminator
[0, k − 1]

All nodes on any given level of the tree have
the same discriminator

For any node P, let j be DISC(P)
Then for any node Q in LEFT(P),
Kj(Q) < K j(P)

Then for any node R in RIGHT(P),
Kj(R) > K j(P)

Computer Science Department Colluquium Series – p.19

k-d Tree Example (k = 2)

G(10,60)

F(70,85)

B(10,70)

D(25,20)

E(40,85)

A(50,50)

(0,0)

(100,100)

C(80,15)

A

B C

FED

G

0

1

0

1

DISC

Computer Science Department Colluquium Series – p.20

k-d Tree Insertion/Search

void kdtree<D,K,T,C>::insert(kdtree <D, K, T, C>::node*& tree,

T& data , size_t disc) {

if(!tree) {

tree = do_insert(data , disc , NULL , NULL);

return;

}

int suc = m_compare (data , tree->data, disc);

if(suc < 0) {

insert(tree->left, data, next_disc(disc));

} else if(suc > 0) {

insert(tree->right , data , next_disc(disc));

}

}

Computer Science Department Colluquium Series – p.21

k-d Tree Nearest Neighbor

void kdtree<D,K,T,C>::neighbors(kdtree <D,K,T,C>::node* tree,

std::list<T>& results , T& data,

K distance) {

if(!tree) return;

K delta = m_compare.diff(data , tree->data , tree->disc);

if(delta < 0) {

neighbors(tree->left, results , data , distance);

if((delta * delta) < distance)

neighbors (tree->right , results , data , distance);

} else {

neighbors(tree->right , results , data , distance);

if((delta * delta) < distance)

neighbors (tree->left , results , data, distance);

}

Computer Science Department Colluquium Series – p.22

k-d Tree Nearest Neighbor (cont.)

delta = m_compare.diff(data , tree->data);

if((delta * delta) < distance) {

results.push_back (tree->data);

}

}

Computer Science Department Colluquium Series – p.23

k-d Tree C++ Tangent

Creating a generic k-d tree in C++ is simple

We must be able to determine if a node is
less than or greater than another node given
a discriminate

Use a templates and functors

Computer Science Department Colluquium Series – p.24

k-d Tree Functor Example

kdtree<size_t DIMS , class DT, class T, class SUCCESSOR >

struct vector3_successor {

int operator()(const math::vector3* lhs,

const math::vector3* rhs, size_t dim) {

assert(dim < 3);

const math::vector3 &a = *lhs, &b = *rhs;

for(unsigned int i = 0; i < 3; ++i) {

unsigned int j = (i + dim) % 3;

if(a(j) < b(j)) return -1;

if(a(j) > b(j)) return 1;

}

return 0;

}

};

Computer Science Department Colluquium Series – p.25

k-d Tree Example (cont.)

Isn’t this slow? No!

Faster than the C equivalent: function
pointers (qsort)

Why? Compilers can optimize the code in
the functor

Over 600% faster!

Computer Science Department Colluquium Series – p.26

Flocking

Simulates the behavior of a group (herd,
school, swarm, etc.)

Made up of individual autonomous agents
called boids

Can be though of as a specialized particle
system

Stateless algorithm

Computer Science Department Colluquium Series – p.27

Flocking Rules

Algorithm is marked by four rules (steering
behaviors)

Separation - Avoid crowding
Alignment - Move in the same direction
local flock mates are moving
Cohesion - Move towards the center of
the flock’s mass
Avoidance - Avoid obstacles, flock mates,
enemies

Emergent Behavior

Computer Science Department Colluquium Series – p.28

Flocking Demo

Computer Science Department Colluquium Series – p.29

Future/Conclusions/Questions

Most of the things mentioned on the first
slide are not done

Is there a better way to compute the nearest
neighbor?

Running scripts through Lua is cheap, but
not free

Add script scheduler.

Use OO in Lua.

Computer Science Department Colluquium Series – p.30

	Motivation
	Motivation (cont.)
	Monster Testbed App. Activate
	Master Plan = Violent Birds
	Master Plan (cont.)
	Scripting Goals
	Lua
	Lua Features
	Lua Types
	Lua Tables
	Lua's C Interface
	Lua's Conclusion
	Glue
	Glue Example
	Glue Example (cont.)
	Let's Be Friends
	k-d Tree
	k-d Tree Discriminator
	k-d Tree Example (k = 2)
	k-d Tree Insertion/Search
	k-d Tree Nearest Neighbor
	k-d Tree Nearest Neighbor (cont.)
	k-d Tree C++ Tangent
	k-d Tree Functor Example
	k-d Tree Example (cont.)
	Flocking
	Flocking Rules
	Flocking Demo
	Future/Conclusions/Questions

