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Motivation

Lighting provides visual cues for the user
Shape
Size
Texture

Lighting is key for realism
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Basic OpenGL Lighting
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Without Lighting or Color
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So Ugly

Not practical

Geometry data is not enough

Needs color

Needs lighting
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Flat Shading

Computer Science Department Colloquium Series – p.9



Flat Shading (cont.)

Each polygon is given a color

Different colors can be assigned to different
polygons

No sense of depth
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Smooth Shading
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Smooth Shading (cont.)

Each vertex is given a color

Colors are interpolated between vertexes

Vertex ordering may cause artifacts during
interpolation

Still no sense of depth
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Lighting 101

Simple lighting can be broken up into 3
separate components

Ambient - Simulates secondary light i.e. light
bouncing off walls

Diffuse - Most closely models natural light
coming from a light source

Specular - Adds reflective highlights
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Diffuse Phong Lighting
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Diffuse Term

diffuse = (max{L · N, 0}) × diffuselight × diffusematerial

L = unit vector from the vertex to the light

N = unit normal at the vertex

diffuselight = diffuse color of the light

diffusematerial = diffuse color of the vertex
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Ambient Term

Global light needs to be accounted for

No direction

Should be relatively dim

ambient = ambientlight × ambientmaterial
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Attenuation

Light should fall off with distance

attenuation factor =
1

kc + kld + kqd2

d = distance from the vertex to the light

kc = constant attenuation constant

kl = linear attenuation constant

kq = quadratic attenuation constant
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Putting It All Together

color = ambientlight × ambientmaterial +

(

1
kc + kld + kqd2

)

×

[

(max{L · N, 0}) × diffuselight × diffusematerial

]
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Diffuse and Specular Lighting
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Specular Term

specular = (max{H · N, 0})shininess ×

specularlight × specularmaterial

If L · N = 0 the specular term is 0

H = the half vector
a unit vector half way between the unit vector from the vertex towards the light

and the unit vector from the vertex towards the eye position

shininess = specular exponent
controls the size of the specular highlight
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Putting It All Together Again

color = ambientlight × ambientmaterial +

(

1
kc + kld + kqd2

)

×

[(max{L · N, 0}) × diffuselight × diffusematerial +

(max{H · N, 0})shininess
× specularlight × specularmaterial]
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Smooth/Flat Lighting

Lighting can be computed either:
Per-polygon (flat shading)
Per-vertex (smooth shading)
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Demo
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Texture Mapping

Process of mapping a n-dimensional image
onto a polygon

Gives surface "texture"

Adds detail without adding more polygons

Computer Science Department Colloquium Series – p.24



Texture Mapping Example
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Shaping Up

Increasing the number of polygons in the
object helps to further define the shape

Adding vertexes makes per-vertex lighting
computations more accurate

Stabilizes specular highlights
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More Polygons
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More Polygons
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More Polygons
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Demo
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Basic OpenGL Lighting Summary

Part of the OpenGL API

Implemented in hardware

Simulates plastic-like substance

Textures used for realism

May require large polygon counts
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Advanced Lighting Techniques
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Goals

We want our scene to be:
As close to photo-realistic as we can get
Interactive
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Ideas

We can add geometry:
HW can only handle a limited number of
polygons
Memory may be limited
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Ideas (cont.)

We can use photo-realistic textures:
HW can only handle a limited number of
polygons
Memory may be limited
Unless polygon count is high, scene may
appear "flat"
Most textures encode shadow information
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Solution

Use a hybrid approach:
Use enough polygons to define the
general shape of an object
Use texturing to define the objects details

Most textures encode shadow information
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Texture with Shadows
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Multiple Textures

Use multiple texture maps

Each texture map represents a property of
the surface:

Color Map - Defines the surface’s color
(without shadow information)
Bump Map - Greyscale image that
defines the surface’s height
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Color/Bump Map Example
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Key: Normal

Specular and diffuse lighting terms both
used the surface’s normal

We want to use the normal described by the
height information in the bump map

Generating normals from a bump map is
straight-forward

Bump Map→ Normal Map
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Normal Map Example
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Normal Map

RGB component of normal map represents
the scaled XYZ components of the normal

mapi =
normali

2 + 0.5

Normal is defined in tangent space
Explains blue tint of normal map (Z
component is always positive in tangent
space)
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Bump Mapping Example
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Demo
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More Texture Maps

We can add different types of texture maps
to help us reach photorealism

Specular Map - Modulates the specular
component of the lighting equation

Ambient Map - Adds ambient light to the
surface
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Specular Map Example
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Ambient Map Example
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Another Bump Mapping Example
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Demo
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Evolution of OpenGL

Such demos were not possible 5 years ago

OpenGL’s graphics pipeline has evolved over
the past 10 years:

State machine
Configurable
(GL_NV_register_combiners)
Programmable with ASM like languages
(ARB_fragment/vertex_program)
Programmable with high-level languages
(GLSlang)
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Evolution of OpenGL (cont.)

The new programmable features of OpenGL
allow the programmer to totally replace
OpenGL’s lighting equation
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Summary

Real time graphics have come a long way
from flat shaded polygons

We’re getting closer to generating
photo-realistic scenes in real time

The techniques we’ve described will be what
you’ll see in real-time application for the next
5 years

We’ve neglected to mention shadow
generation
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Plug

Come to the graphics seminar to find out
more

Wednesday @ 2:30 Hidden somewhere in
Riggs
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