
Approaching Photorealism in
OpenGL

Lighting

Nathan Cournia and Andrew Van Pernis

{acnatha, arakel}@vr.clemson.edu.

Clemson University

Computer Science Department Colloquium Series – p.1



Outline

Computer Science Department Colloquium Series – p.2



Outline

Motivation

Basic OpenGL Lighting

Advanced Lighting Techniques

Computer Science Department Colloquium Series – p.3



Motivation

Computer Science Department Colloquium Series – p.4



Motivation

Lighting provides visual cues for the user
Shape
Size
Texture

Lighting is key for realism

Computer Science Department Colloquium Series – p.5



Basic OpenGL Lighting

Computer Science Department Colloquium Series – p.6



Without Lighting or Color

Computer Science Department Colloquium Series – p.7



So Ugly

Not practical

Geometry data is not enough

Needs color

Needs lighting

Computer Science Department Colloquium Series – p.8



Flat Shading

Computer Science Department Colloquium Series – p.9



Flat Shading (cont.)

Each polygon is given a color

Different colors can be assigned to different
polygons

No sense of depth

Computer Science Department Colloquium Series – p.10



Smooth Shading

Computer Science Department Colloquium Series – p.11



Smooth Shading (cont.)

Each vertex is given a color

Colors are interpolated between vertexes

Vertex ordering may cause artifacts during
interpolation

Still no sense of depth

Computer Science Department Colloquium Series – p.12



Lighting 101

Simple lighting can be broken up into 3
separate components

Ambient - Simulates secondary light i.e. light
bouncing off walls

Diffuse - Most closely models natural light
coming from a light source

Specular - Adds reflective highlights

Computer Science Department Colloquium Series – p.13



Diffuse Phong Lighting

Computer Science Department Colloquium Series – p.14



Diffuse Term

diffuse = (max{L · N, 0}) × diffuselight × diffusematerial

L = unit vector from the vertex to the light

N = unit normal at the vertex

diffuselight = diffuse color of the light

diffusematerial = diffuse color of the vertex

Computer Science Department Colloquium Series – p.15



Ambient Term

Global light needs to be accounted for

No direction

Should be relatively dim

ambient = ambientlight × ambientmaterial

Computer Science Department Colloquium Series – p.16



Attenuation

Light should fall off with distance

attenuation factor =
1

kc + kld + kqd2

d = distance from the vertex to the light

kc = constant attenuation constant

kl = linear attenuation constant

kq = quadratic attenuation constant

Computer Science Department Colloquium Series – p.17



Putting It All Together

color = ambientlight × ambientmaterial +

(

1
kc + kld + kqd2

)

×

[

(max{L · N, 0}) × diffuselight × diffusematerial

]

Computer Science Department Colloquium Series – p.18



Putting It All Together

color = ambientlight × ambientmaterial +
(

1
kc + kld + kqd2

)

×

[

(max{L · N, 0}) × diffuselight × diffusematerial

]

Computer Science Department Colloquium Series – p.18



Putting It All Together

color = ambientlight × ambientmaterial +
(

1
kc + kld + kqd2

)

×

[

(max{L · N, 0}) × diffuselight × diffusematerial

]

Computer Science Department Colloquium Series – p.18



Diffuse and Specular Lighting

Computer Science Department Colloquium Series – p.19



Specular Term

specular = (max{H · N, 0})shininess ×

specularlight × specularmaterial

If L · N = 0 the specular term is 0

H = the half vector
a unit vector half way between the unit vector from the vertex towards the light

and the unit vector from the vertex towards the eye position

shininess = specular exponent
controls the size of the specular highlight

Computer Science Department Colloquium Series – p.20



Putting It All Together Again

color = ambientlight × ambientmaterial +

(

1
kc + kld + kqd2

)

×

[(max{L · N, 0}) × diffuselight × diffusematerial +

(max{H · N, 0})shininess
× specularlight × specularmaterial]

Computer Science Department Colloquium Series – p.21



Putting It All Together Again

color = ambientlight × ambientmaterial +
(

1
kc + kld + kqd2

)

×

[(max{L · N, 0}) × diffuselight × diffusematerial +

(max{H · N, 0})shininess
× specularlight × specularmaterial]

Computer Science Department Colloquium Series – p.21



Putting It All Together Again

color = ambientlight × ambientmaterial +
(

1
kc + kld + kqd2

)

×

[(max{L · N, 0}) × diffuselight × diffusematerial +

(max{H · N, 0})shininess
× specularlight × specularmaterial]

Computer Science Department Colloquium Series – p.21



Putting It All Together Again

color = ambientlight × ambientmaterial +
(

1
kc + kld + kqd2

)

×

[(max{L · N, 0}) × diffuselight × diffusematerial +

(max{H · N, 0})shininess
× specularlight × specularmaterial]

Computer Science Department Colloquium Series – p.21



Smooth/Flat Lighting

Lighting can be computed either:
Per-polygon (flat shading)
Per-vertex (smooth shading)

Computer Science Department Colloquium Series – p.22



Demo

Computer Science Department Colloquium Series – p.23



Texture Mapping

Process of mapping a n-dimensional image
onto a polygon

Gives surface "texture"

Adds detail without adding more polygons

Computer Science Department Colloquium Series – p.24



Texture Mapping Example

Computer Science Department Colloquium Series – p.25



Shaping Up

Increasing the number of polygons in the
object helps to further define the shape

Adding vertexes makes per-vertex lighting
computations more accurate

Stabilizes specular highlights

Computer Science Department Colloquium Series – p.26



More Polygons

Computer Science Department Colloquium Series – p.27



More Polygons

Computer Science Department Colloquium Series – p.28



More Polygons

Computer Science Department Colloquium Series – p.29



Demo

Computer Science Department Colloquium Series – p.30



Basic OpenGL Lighting Summary

Part of the OpenGL API

Implemented in hardware

Simulates plastic-like substance

Textures used for realism

May require large polygon counts

Computer Science Department Colloquium Series – p.31



Basic OpenGL Lighting Summary

Part of the OpenGL API

Implemented in hardware

Simulates plastic-like substance

Textures used for realism

May require large polygon counts

Computer Science Department Colloquium Series – p.31



Basic OpenGL Lighting Summary

Part of the OpenGL API

Implemented in hardware

Simulates plastic-like substance

Textures used for realism

May require large polygon counts

Computer Science Department Colloquium Series – p.31



Basic OpenGL Lighting Summary

Part of the OpenGL API

Implemented in hardware

Simulates plastic-like substance

Textures used for realism

May require large polygon counts

Computer Science Department Colloquium Series – p.31



Basic OpenGL Lighting Summary

Part of the OpenGL API

Implemented in hardware

Simulates plastic-like substance

Textures used for realism

May require large polygon counts

Computer Science Department Colloquium Series – p.31



Advanced Lighting Techniques

Computer Science Department Colloquium Series – p.32



Goals

We want our scene to be:
As close to photo-realistic as we can get
Interactive

Computer Science Department Colloquium Series – p.33



Ideas

We can add geometry:
HW can only handle a limited number of
polygons
Memory may be limited

Computer Science Department Colloquium Series – p.34



Ideas (cont.)

We can use photo-realistic textures:
HW can only handle a limited number of
polygons
Memory may be limited
Unless polygon count is high, scene may
appear "flat"
Most textures encode shadow information

Computer Science Department Colloquium Series – p.35



Solution

Use a hybrid approach:
Use enough polygons to define the
general shape of an object
Use texturing to define the objects details

Most textures encode shadow information

Computer Science Department Colloquium Series – p.36



Texture with Shadows

Computer Science Department Colloquium Series – p.37



Multiple Textures

Use multiple texture maps

Each texture map represents a property of
the surface:

Color Map - Defines the surface’s color
(without shadow information)
Bump Map - Greyscale image that
defines the surface’s height

Computer Science Department Colloquium Series – p.38



Color/Bump Map Example

Computer Science Department Colloquium Series – p.39



Key: Normal

Specular and diffuse lighting terms both
used the surface’s normal

We want to use the normal described by the
height information in the bump map

Generating normals from a bump map is
straight-forward

Bump Map→ Normal Map

Computer Science Department Colloquium Series – p.40



Normal Map Example

Computer Science Department Colloquium Series – p.41



Normal Map

RGB component of normal map represents
the scaled XYZ components of the normal

mapi =
normali

2 + 0.5

Normal is defined in tangent space
Explains blue tint of normal map (Z
component is always positive in tangent
space)

Computer Science Department Colloquium Series – p.42



Bump Mapping Example

Computer Science Department Colloquium Series – p.43



Demo

Computer Science Department Colloquium Series – p.44



More Texture Maps

We can add different types of texture maps
to help us reach photorealism

Specular Map - Modulates the specular
component of the lighting equation

Ambient Map - Adds ambient light to the
surface

Computer Science Department Colloquium Series – p.45



Specular Map Example

Computer Science Department Colloquium Series – p.46



Ambient Map Example

Computer Science Department Colloquium Series – p.47



Another Bump Mapping Example

Computer Science Department Colloquium Series – p.48



Demo

Computer Science Department Colloquium Series – p.49



Evolution of OpenGL

Such demos were not possible 5 years ago

OpenGL’s graphics pipeline has evolved over
the past 10 years:

State machine
Configurable
(GL_NV_register_combiners)
Programmable with ASM like languages
(ARB_fragment/vertex_program)
Programmable with high-level languages
(GLSlang)

Computer Science Department Colloquium Series – p.50



Evolution of OpenGL (cont.)

The new programmable features of OpenGL
allow the programmer to totally replace
OpenGL’s lighting equation

Computer Science Department Colloquium Series – p.51



Summary

Real time graphics have come a long way
from flat shaded polygons

We’re getting closer to generating
photo-realistic scenes in real time

The techniques we’ve described will be what
you’ll see in real-time application for the next
5 years

We’ve neglected to mention shadow
generation

Computer Science Department Colloquium Series – p.52



Plug

Come to the graphics seminar to find out
more

Wednesday @ 2:30 Hidden somewhere in
Riggs

Computer Science Department Colloquium Series – p.53


	Outline
	Outline
	Motivation
	Motivation
	Basic OpenGL Lighting
	Without Lighting or Color
	So Ugly
	Flat Shading
	Flat Shading (cont.)
	Smooth Shading
	Smooth Shading (cont.)
	Lighting 101
	Diffuse Phong Lighting
	Diffuse Term
	Ambient Term
	Attenuation
	Putting It All Together
	Diffuse and Specular Lighting
	Specular Term
	Putting It All Together Again
	Smooth/Flat Lighting
	Demo
	Texture Mapping
	Texture Mapping Example
	Shaping Up
	More Polygons
	More Polygons
	More Polygons
	Demo
	Basic OpenGL Lighting Summary
	Advanced Lighting Techniques
	Goals
	Ideas
	Ideas (cont.)
	Solution
	Texture with Shadows
	Multiple Textures
	Color/Bump Map Example
	Key: Normal
	Normal Map Example
	Normal Map
	Bump Mapping Example
	Demo
	More Texture Maps
	Specular Map Example
	Ambient Map Example
	Another Bump Mapping Example
	Demo
	Evolution of OpenGL
	Evolution of OpenGL (cont.)
	Summary
	Plug

