
Pixel Buffers in OpenGL

Andrew Van Pernis

Clemson University

A brief discussion of the extensions to OpenGL to support the use of off-screen rendering buffers.

Key Words and Phrases: pixel buffer, OpenGL, off-screen rendering

1. INTRODUCTION

Modern graphics hardware has developed to include large amounts of dedicated
memory. Furthermore, memory dedicated to the framebuffer is often much more
than is necessary for the pixel resolutions on currently available display devices. In
addition, many algorithms for enhancing the appearance of scenes rendered with
OpenGL require multiple rendering passes. The basic format of these multiple
pass algorithms can be found in Algorithm 1. The efficiency of these multiple

Algorithm 1 A basic multiple pass OpenGL algorithm.
for all passes in algorithm do

render pass to framebuffer
read back framebuffer and store

end for
combine stored passes and display

pass algorithms would be greatly enhanced if multiple off-screen framebuffers were
available, ideally so that there was one buffer per pass plus one for display. Pixel
buffers have been introduced as an extension to OpenGL to satisfy this need for
additional off-screen rendering buffers by taking advantage of the extra memory
available to the framebuffer.

At least two extensions are available for providing pixel buffers in OpenGL,
WGL ARB pbuffer and GLX SGIX pbuffer. WGL ARB pbuffer is an ex-
tension which adds pixel buffers to OpenGL on platforms running Microsoft Win-
dows. GLX SGIX pbuffer does the same for those running X windows. Both
extensions provide similar functionality. Complete descriptions of the extensions
can be found in the OpenGL Extension Registry [SGI 2003].

2. PIXEL BUFFERS IN X WINDOWS

Creating a pixel buffer for use with X windows requires two OpenGL extensions,
GLX SGIX fbconfig and GLX SGIX pbuffer. GLX SGIX fbconfig is an
extension to the X windows support for OpenGL. It provides expanded capabilities

E-mail: arakel@vr.clemson.edu
Web: http://www.vr.clemson.edu/˜arakel

c© 2003 Dr. Andrew Duchowski

Graphics Seminar Notes, Pages 1–6.

2 · Andrew Van Pernis

for describing OpenGL drawable regions. GLX SGIX pbuffer defines the data
structures and functions used to create, access, and destroy pixel buffers.

2.1 Using GLX SGIX fbconfig

When using OpenGL with X windows, one of the first steps towards creating a
GLX drawable is to select an appropriate visual for the drawable. The standard
way to do that is with the command glXChooseVisual as can be seen in Listing 1.
The GLX SGIX fbconfig extension expands the visual selection process slightly.
Listing 2 shows the functions used for selecting an appropriate visual when using
GLX SGIX fbconfig.

Listing 1. Standard method for selecting a visual in X windows.
XVisualInfo * selected_visual;

selected_visual = glXChooseVisual(display , screen , attributes);

Listing 2. GLX SGIX fbconfig method for selecting a visual.
//Get a list of frame buffer configurations

GLXFBConfigSGIX * available_configs = NULL;

int num_configs = 0;

available_configs = glXChooseFBConfigSGIX(display , screen ,

attributes , & num_configs);

// Choose a visual based on the frame buffer configuration

XVisualInfo * selected_visual;

if (num_available_configs > 0)

selected_visual = glXGetVisualFromFBConfigSGIX(display ,

available_configs [0]);

A new datatype, GLXFBConfigSGIX, is added by GLX SGIX fbconfig which
stores information describing the format, type and size of the buffers associated
with a GLX drawable. The function glXChooseFBConfigSGIX returns a sorted list
of GLXFBConfigSGIXs that match the attributes passed as the third parameter. If
the third parameter is set to NULL, then the function returns a list of all of the
GLXFBConfigSGIXs available for the given screen. The number of valid GLXFB-
ConfigSGIXs is stored in the forth parameter as well. Since the GLXFBConfig that
best matched the requested attributes is the first item in the list returned by glX-
ChooseFBConfigSGIX, it is then passed as the second parameter to the function
glXGetVisualFromFBConfigSGIX. Any of the GLXFBConfigSGIXs could be used,
but it is rare that a programmer would want anything other than the one that best
matched the attributes requested.

The main contribution of the GLX SGIX fbconfig extension is allowing a
programmer to request visuals with a wider variety of attributes than the standard
method (i.e. using glXChooseVisual). Furthermore, it allows other extensions,
such as GLX SGIX pbuffer, to request visuals with attributes that those exten-
sions have added to OpenGL.

Pixel Buffers in OpenGL · 3

2.2 Using GLX SGIX pbuffer

In order to create a pixel buffer, an appropriate frame buffer configuration must be
selected using the GLX SGIX fbconfig extension described in 2.1. Choosing a
frame buffer configuration for the pixel buffer requires specifying a list of desired
attributes. This list of attributes is defined in the code as an array of integer values.
An example set of attributes can be seen in Listing 3. The first pair of values in
the attribute list specify that the desired frame buffer configuration is for a pixel
buffer. The remaining pairs are standard values that would be used for determining
any type of frame buffer configuration. Note that double-buffering is not required,
since the contents of the pixel buffer will not be displayed directly.

Listing 3. Example set of desired frame buffer attributes.
const int ATTRIBUTES_32BPP [] = {

GLX_DRAWABLE_TYPE_SGIX , GLX_PBUFFER_BIT_SGIX ,

GLX_RENDER_TYPE_SGIX , GLX_RGBA_BIT_SGIX ,

GLX_DOUBLEBUFFER , GL_FALSE ,

GLX_RED_SIZE , 8,

GLX_GREEN_SIZE , 8,

GLX_BLUE_SIZE , 8,

GLX_ALPHA_SIZE , 8,

None

};

After an appropriate frame buffer configuration has been selected, a pixel buffer
can be created with a call to glXCreateGLXPbufferSGIX. Listing 4 shows how to
create a pixel buffer using the attributes specified above. An additional list of
attributes is passed to the pixel buffer creation function as an array of integers.
Currently, two values are used to define pixel buffer attributes. The boolean value
GLX PRESERVED CONTENTS SGIX specifies whether or not the contents of the pixel
buffer should be maintained when a resource conflict occurs. The other value, GLX -
LARGEST PBUFFER SGIX, is used to get the largest available pixel buffer when the
requested size is not available.

Listing 4. Pixel buffer creation example.
const int PIXEL_BUFFER_ATTRIBUTES [] = {

GLX_PRESERVED_CONTENTS_SGIX ,

None

};

int num_configs = 0;

int width = 640 , height = 480;

GLXFBConfigSGIX * available_configs = glXChooseFBConfigSGIX(

display , screen , ATTRIBUTES_32BPP , & num_configs);

GLXPbuffer pixel_buffer = glXCreateGLXPbufferSGIX(display ,

available_configs [0], width , height ,

PIXEL_BUFFER_ATTRIBUTES);

An OpenGL context, in the form of a GLXContext, must be created for the pixel
buffer in order to use it. GLX SGIX fbconfig provides a function for context cre-

4 · Andrew Van Pernis

ation using a GLXFBConfigSGIX. The main difference between glXCreateContext-
WithConfigSGIX and the standard glXCreateContext is that the context created
by glXCreateContextWithConfigSGIX can be used to render to any compatible
GLXDrawable, whereas glXCreateContext can only be used to create contexts for
windows or GLXPixmaps. An example of context creation for a pixel buffer can
be seen in Listing 5. Also note, the third parameter to glXCreateContextWith-
ConfigSGIX allows the programmer to specify a lists of contexts that will share
display lists with the newly created context. Contexts that share display lists
also share texture objects (except for texture object 0). By sharing display lists
and texture object with the main display window the contents of a pixel buffer
can be copied directly into a texture using one of the glCopyTexImage* or gl-
CopyTexSubImage* commands. In order to switch between contexts, the command
glXMakeContextCurrent is used. The function glXGetCurrentContext can check
what the current context is. It is important to remember when using pixel buffers,
OpenGL commands apply only to the current context, which must be set explicitly.

Listing 5. Creating a GLXContext for a pixel buffer.
GLXContext _pixel_buffer_context =

glXCreateContextWithConfigSGIX(display , available_configs

[0], GLX_RGBA_TYPE_SGIX , window_context , GL_TRUE);

There are several other commands which are used to manipulate pixel buffers.
The first, glXQueryGLXPbufferSGIX, is used to obtain information about the pixel
buffer. The width, height and i.d. of the associated GLXFBConfigSGIX can found
with glXQueryGLXPbufferSGIX, as well as the status of either the attributes used
when creating a pixel buffer. Two related commands, glXSelectEventSGIX and
glXGetSelectedEventSGIX, are used along with a single GLX event, GLX BUFFER -
CLOBBER MASK SGIX, to determine when a pixel buffer has been invalidated by a
resource conflict. The final command is glXDestroyGLXPbufferSGIX, which is
used to eliminate pixel buffer that are no longer needed. An example of pixel buffer
destruction can be seen in Listing 6. As can be seen in the example, the context
associated with a pixel buffer should be destroyed before the pixel buffer itself.

Listing 6. Destroying a pixel buffer.
glXDestroyContext(display , pixel_buffer_context);

pixel_buffer_context = NULL;

glXDestroyGLXPbufferSGIX(display , pixel_buffer);

3. PIXEL BUFFER SUPPORT IN UBER

Uber’s pixel buffer wrapper class is called pixel buffer and is contained within the
gl namespace. Because it is simply a wrapper to provide object-oriented function-
ality for pixel buffers, the pixel buffer class contains an associated pixel buffer,
which is not automatically created when a pixel buffer object is created. Instead,
a call to the member function init is used to create the associated pixel buffer.
Subsequent calls to init will not create additional pixel buffers. The pixel buffer
attached to the pixel buffer object must be destroyed through the shutdown

Pixel Buffers in OpenGL · 5

method, before another pixel buffer can be created by init. Thus, a programmer
desiring multiple pixel buffers should create multiple pixel buffer objects.

The init method has been overloaded to provide the programmer with multiple
ways of creating a pixel buffer. The simplest requires four parameters; a width and
height for the pixel buffer, the desired bits for pixel assuming use of RGBA values,
and a list of contexts to share. A second version of init is similar to the first but
allows the programmer to specify a list of desired attributes for the pixel buffer as
well. Listing 7 demonstrates the creation of a pixel buffer object and the use of
the init method. Note that, init returns a boolean value declaring whether or
not a pixel buffer was successfully allocated for the pixel buffer object. If a pixel
buffer could not be created, the method get error can be used to obtain an error
message for further explanation.

Listing 7. Creating a pixel buffer in Uber.
const int PIXEL_BUFFER_SIZE = 512;

gl:: pixel_buffer p_buffer

if (! p_buffer.init(PIXEL_BUFFER_SIZE , PIXEL_BUFFER_SIZE , 32 ,

NULL)){

std::cerr << "ERROR : " << p_buffer.get_error () << std::endl;

return 2;

}

Once a pixel buffer has successfully created, the method, activate, is used to
switch to the context associated with that pixel buffer. Because copying the con-
tents of a pixel buffer to a texture for use in the display window is the most common
case for using a pixel buffer, an Uber texture object is created to go along with
each pixel buffer object after it has been initialized. This texture object can be
obtained with the method, get texture. Listing 8 demonstrates using the texture
object that is created by a pixel buffer object. Finally, the shutdown method
can be used to destroy the pixel buffer associated with a pixel buffer object.

Listing 8. Using an Uber texture with a pixel buffer.
p_buffer.get_texture ().bind();

glTexParameteri(GL_TEXTURE_2D , GL_GENERATE_MIPMAP_SGIS , GL_TRUE

);

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER ,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER , GL_LINEAR

);

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S , GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_T , GL_REPEAT);

glCopyTexImage2D(GL_TEXTURE_2D , 0, GL_RGB , 0, 0,

PIXEL_BUFFER_SIZE , PIXEL_BUFFER_SIZE , 0);

4. CONCLUSION

Pixel buffers are a fairly simple extension to OpenGL that provide the programmer
with a great deal of flexibility for implementing advanced rendering algorithms.

6 · Andrew Van Pernis

Although two platform dependent extensions exist to add pixel buffer support, the
differences between the extensions are not significant. This allows the extensions
to be wrapped inside of class within the Uber library.

REFERENCES

SGI. 1993-2003. OpenGL extension registry. http://oss.sgi.com/projects/oglsample/registry/.

Shreiner, D., Ed. 2000. OpenGL Reference Manual , Third ed. Addison-Wesley. The Official

Reference Document to OpenGL, Version 1.2.

Woo, M., Neider, J., Davis, T., and Shreiner, D. 1999. OpenGL Programming Guide, Third
ed. Addison-Wesley. The Official Guide to Learning OpenGL, Version 1.2.

