
The Uber Graphics Library: An Overview

Nathan Cournia

nathan@cournia.com

Key Words and Phrases: Uber, Graphics, Demo, Library

1. INTRODUCTION

This article presents the Uber graphics library. The Uber graphics library is a small
C++ library designed to aid in the creation of graphics demos. The goal of Uber
is to provide a base of commonly used code (such as methods to open window,
perform matrix math, etc) so that the programmer can focus on polishing his/her
demo, rather than worring about how to load a TARGA file.

2. FEATURES

Features of the library include:

—Portablility. With the help of autoconf, portability is achieved via the C
prepoccessor and portable coding practices. Uber is know to successfully compile
and run on both Linux and Windows platforms.

—OpenGL. All graphics are handled through the tried and tested OpenGL graph-
ics library.

—Image Manipulation. Low level functions such as blitting, blending, and seek-
ing are support through Uber’s image interface.

—File Format Support. Uber natively supports the Portable Pixmap (PNM)
and TrueVision TARGA (TGA) formats. BMP, XPM, LBM, PCX, GIF, JPEG,
and PNG image formats are also support via 3rd party libraries.

—Texturing Building on top of Uber’s image object and OpenGL, tedious oper-
ations such as texture loading, can now be achieved in a single function call.

—Timers. Uber’s clocker object can be used for such things as performance
measurement and physics calculations.

—Utility Functions. Uber features a small library of cross-platform portable
utility functions such as mkdir() and chdir(). Other useful functions include
PERL like string manipulation functions and C++ based file IO access functions.

—Math Library. Uber sports a full featured math library which supports math-
ematical concepts suchs as vectors, quaternions, and matrices. Each of these
objects is represented as a C++ class, thereby affording the programmers all
of the benfits of the C++ object system, such as type safety, encapsulation,
polymorphism, and ease of use.

—Multiple Backends. Uber is design to support multiple backends, such as SDL,
GLUT, X, and GTK+. At this time only the SDL backend is supported.

—True Type Font Rendering High quality text rendering is a breeze with Uber’s
true type font rendering object.

Graphics Seminar Notes, Pages 1–20.

2 · Nathan Cournia

—Graphical User Interfaces. Tedious operations such as opening windows,
initializing OpenGL, and switching between fullscreen contexts, are some of the
features that Uber’s video subsystem is capable of easily handling.

2.1 What Uber Doesn’t Do

Uber is not designed for the following operations:

—Input Handling. The Uber library is designed to support multiple backends
(such as SDL, GLUT, X, GTK+, etc.). Input handling in each of these backends
is designed differently. Abstracting the input from these backends into a common
format would be difficult. As such, Uber makes no attempt to do so. Input
handling must be written in a backend specific manner. To aid the programmer in
this task, C preprocessor symbols are provided to determine backend capabilities.

—Sound. Uber has no sound interface. Sound must be handled either via the
backend, or an external libarary.

3. GETTING STARTED

3.1 Obtaining Sources

Before you start using the Uber graphics library, you must first obtain it. The Uber
graphics libary can only be downloaded from CVS. You can download the library
through CVS on Clemson University’s VR network as follows:

cvs -d/pub/research/uber/cvsroot co uber

Off-campus via SSH:

cvs -dusername@rafiki.vr.clemson.edu:/pub/research/uber/cvsroot co uber

Where username is your login on Clemson University’s VR network.

3.2 Building Uber

Once you have obtained the Uber source code, you must build it. To build the
Uber library, you must first initialize autoconf:

./bootstrap

This will generate the configure script, which must be ran next:

./configure

The final step in building the Uber library is compiling and linking the source
code. This is done via make:

make

At this point the Uber library should be built.

The Uber Graphics Library: An Overview · 3

3.3 Viewing Demos

All demos are contained in the demos directory. Within the demos directory, each
demo is located in a self-contained directory. To run a demo enter at the shell:

cd demos

cd mydemo

./mydemo

Where mydemo is the name of the demo you wish to view.

4. USING UBER

One of Uber’s design goals is ease-of-use. As such, an effort has been made to keep
Uber’s interface small and simple. In this section we give an overview of this small
and simple interface, resulting in several example programs.

4.1 Creating a Window

Opening a window is a simple and straight forward process. To open a window,
simply initalize a video object. To initialize the video object, create the object
followed by a call to the objects video base::init method.

void video_base ::init(

unsigned int w, // width of the window

unsigned int h, // height of the window

unsigned int bpp , //bits per pixel

bool fs) //true for fullscreen mode

Listing 1 illustrates an example on how to initalize the video object.

Listing 1. Opening a Window
// create a video context with a SDL backend

video_sdl video;

if(! video.init (640 , 480 , 32 , false)) {

// something went wrong while initalizing the video object

std::cerr << "error : " << video.get_error () << std::endl;

return 1;

}

Note that the programmer has a choice as to what type of video backend he/she
wishes to use. In Listing 1 a SDL backend was choosen by creating a video sdl object.
Other backends can be choosen by simply creating an object of the appropriate type.
For example, to create a GTK+ backend, instantiate a video gtk object.

Refer to demos/overview/window.cpp for a complete example illustrating how to
open a window and handle backend specific events.

4.2 Creating a Simple Image Viewer

Now that we know how to open a window, we must do something with it. In this
section we overview how to load a texture into the OpenGL subsystem, and display
that image on the screen.

4 · Nathan Cournia

4.2.1 Loading File Textures. Loading a texture into OpenGL is a straight-
forward process. Simply include the file texture.h in your source code and call
gl::texture::load.

gl:: texture gl:: texture ::load(const std:: string & filename ,

bool build_mipmaps = true ,

GLfloat min_filter = GL_LINEAR_MIPMAP_LINEAR ,

GLfloat max_filter = GL_LINEAR)

gl::texture::load returns a texture object suitable for passing to OpenGL functions
such as glBindTexture. Note that by default gl::texture::load will build mipmaps
for filename and enable trilinear filtering. gl::texture::load is capable of handle non
power of two images. Listing 2 shows an example of loading a file into the OpenGL
subsystem.

Listing 2. Loading a File Texture
//load texture from file

gl:: texture texture = gl:: texture ::load("mrt.jpg");

if(! texture) {

std::cerr << "error : could not load ’mrt.jpg’" << std::endl;

return 1;

}

See demos/overview/simple img.cpp for a complete example showing how to load a
texture from a file.

4.2.2 Writing to the Screen in 2D. Uber has the capablility to easily draw tex-
tures in OpenGL’s orthographic mode. This capability aids in the creation of such
things such as heads up displays. To render a texture to the screen in orthographic
mode call video base::render image.

void vidoe_base :: render_image(

const rectf & rect ,

const gl:: texture & texture)

All 2D drawing via Uber is done in a resolution independent 1024x768 virtual
window. Listing 3 demonstrates drawing a texture to this virtual window.

Listing 3. Drawing to Uber’s Virtual Window
// create a drawing rectangle to tell uber where to

//draw the image on the screen , these coordinates

//will be set in uber’s 1024 x768 virtual 2d window.

rectf draw_rect;

//find the greatest dimension of the image (w or h)

//and set it to 700 pixels (in uber’s virtual

// space). scale the other dimension according to

//the texture ’s aspect ratio.

if(texture.get_aspect () > 1.0) {

// width of the image dominates

draw_rect.set_wh (700.0 , 700.0 / texture.get_aspect ());

The Uber Graphics Library: An Overview · 5

} else {

// height of the image dominates

draw_rect.set_wh (700.0 * texture.get_aspect () , 700.0);

}

// determine the coordinates to draw the image in the

// center of the screen

draw_rect.set_xy (512.0 - draw_rect.w / 2.0 ,

384.0 - draw_rect.h / 2.0);

// . . .

//draw the image to the screen

video.render_image (draw_rect , texture);

See demos/overview/simple img.cpp for an example on how to draw to Uber’s virtual
window. Figure 1 shows the result of this example program.

Fig. 1. Example of Drawing to Uber’s Virtual Window

4.3 Image Blitting/Blending

Uber contains a facility to blit images onto images. Uber’s blitting interface is
capable of operating in the traditional since (a 1 to 1 pixel copy) and also capable
of performing alpha blending.

4.3.1 Loading Images. Before one can blit to an image, an image must be loaded
into memory. The is done through Uber’s image::image t object and the image::load
function.

image :: image_t * image ::load(const std:: string & filename)

In order to use image::load the prorgammer must include image loader.h. Listing 4
contains an example of loading images into memory.

4.3.2 Blitting Images. Once images have been loaded into memory, blitting can
occurr. Blitting is performed by calling the destination image’s image::image t::blit
method.

bool image:: image_t ::blit(

const image_t & img ,

6 · Nathan Cournia

const recti & region)

Listing 4 shows an example of loading an image into memory followed by blitting
one image onto the other.

Listing 4. Blitting Images
//load base image

image :: image_t *base = image::load("mrt.jpg");

if(! base) {

std::cerr << "error : could not load ’mrt.jpg’"

<< std::endl;

return 1;

}

//load image that will be blitted on the base image

image :: image_t *decal = image::load("karl.png");

if(! decal) {

std::cerr << "error : could not load ’karl.png’"

<< std::endl;

return 1;

}

// define a blitting region on the base image

recti blit_rect;

blit_rect.set_xy (70 , 0);

//blit the decal onto the base image

base ->blit (*decal , blit_rect);

4.3.3 Alpha Blending Images. Figure 2 shows the resulting image produced from
Listing 4. image::image t::blit performs a 1 to 1 pixel blit. Notice that the source im-

Fig. 2. Blitting an image onto another.

age has completly overwritten all pixels in the blitting region. As a result, Figure 2
looks less than stellar. To fix this we can blend the source image onto the destination
image (using the alpha information stored in the source image). This is called alpha
blitting/blending. In order to perform alpha blitting, call image::image t::blend.

The Uber Graphics Library: An Overview · 7

bool image:: image_t :: blend(

const image_t & img ,

const recti & region)

Figure 3 displays the results of Listing 4 with the call to image::image t::blit replaced
with image::image t::blend.

Fig. 3. Blending an image onto another.

4.3.4 Loading Textures from Memory. Once an image has been loaded into
memory, sending the image to the OpenGL subsystem is achieved by calling gl::texture::load.

gl:: texture gl:: texture ::load(const image :: image_t *img

bool build_mipmaps = true ,

GLfloat min_filter = GL_LINEAR_MIPMAP_LINEAR ,

GLfloat max_filter = GL_LINEAR)

Once the image has been loaded into OpenGL, the programmer can safely delete the
image. See demos/overview/simple img.cpp for an example on how to load images
residing in memory into the OpenGL subsystem.

4.4 Text Rendering

Building on top of the Freetype 2.0 library, Uber is capable of rendering high quality
bitmap, Type 1, and True Type fonts to the screen.

4.4.1 Loading Fonts. Loading a font is as simple as a call to gl::ttf::load.

gl::ttf* load(

const std:: string & filename ,

unsigned int font_height) // height in px of tallest glyph

Listing 5 contains an example of loading a font.

4.4.2 Rendering Strings. Rendering text to the screen is similar to rendering
images to Uber’s virtual window. video base::render string renders given text to the
screen.

void video_base :: render_string(

real_t &x, //x coord to render string (in virtual window)

real_t &y, //y coord to render string (in virtual window)

const gl::ttf *font , //font to use

8 · Nathan Cournia

real_t size , // height of line in (virtual window) pixels

const std:: string & text)

After calling video base::render string, x and y will be updated with the coordinate
of the last pixel rendered. This pixel will always be the upper right hand pixel of
the last character in the string. Listing 5 demonstrates how to load a font, and
then render text to the screen using the loaded font.

Listing 5. Loading/Rendering Fonts
//load the font

gl::ttf *font = gl::ttf::load("ariblk.ttf" , 32);

if(! font) {

std::cerr << "error : could not load ’ariblk.ttf’"

<< std::endl;

return 1;

}

//set the location of where we want our text rendered

real_t text_x = 310.0;

real_t text_y = 0.0;

// . . .

// render the text

video.render_string (text_x , text_y , font , 32,

"I PITTY THE FOOL!");

See demos/overview/font.cpp for a more in-depth example on how to load and use
fonts. Figure 4 shows the result of this example program.

Fig. 4. Rendering text to the screen.

4.5 Mathematics

All mathematical objects and functions reside in the math namespace. Each object
in the math namespace has been designed to take full advantage of the capabilities
of C++. Objects such as real t, math::matrix4, math::vector, and math::quaternion
have been design to work seamlessly with each other and OpenGL. Overloaded

The Uber Graphics Library: An Overview · 9

operators have been defined for each object to aid in producing code that is both
easy to read, and easy to write.

In the following sections we provide code snippets to help the programmer get
a feel as to how Uber’s math facililties work. For a more in-depth view of Uber’s
math interface, refer to Uber’s API documentation.

4.5.1 Vectors. Vectors in Uber are represents as 3-vectors and are defined in
the object math::vector. Overloaded operators for vectors include -, +, =, ==,
*, and /. Overloaded operators have been defined for such operations such as
scalar addition, scalar, subtractions, and scalar multiplication. Listing 6 shows
math::vector in action. Refer to Uber’s API documentation for more information.

Listing 6. Uber’s Vector Object
// declaring a vector

math:: vector u;

// declaring a vector , passing initializers for x, y, z

math:: vector v(2.0 , 4.0 , -10);

// setting the value of a vector

u.set (-1.0 , 7.0 , 5.0);

// setting the value of a component of the vector

u.x(6.0);

u[0] = 6.0;

// vector multiplication

math:: vector q = u * v;

// vector multiplication (with assignment)

q *= u;

// vector addition

q = u + v;

// vector subtraction

q = u - v;

// scalar multiplication

real_t s;

q = u * s;

// scalar addition

q = u + s;

// scalar subtraction

q = u - s;

// scalar division

q = u / s;

10 · Nathan Cournia

// normalizing a vector

q.normalize ();

// length of a vector

s = q.length ();

// negate (flip) a vector

s.negate ();

// cross product

q = math::cross (u, v);

//dot product

s = math::dot(u,v);

// outputting a vector

std::cout << v << std::endl;

// sending the vector to OpenGL

glVertex3v (u);

// assignment of predefined vectors

u = math:: vector :: IDENTITY;

u = math:: vector :: X_AXIS;

u = math:: vector :: Y_AXIS;

u = math:: vector :: Z_AXIS;

4.5.2 Matrices. Matrices in Uber are represents as 4x4 matrices and are defined
in the object math::matrix4. Overloaded operators for matrices include -, +, =,
==, *, and /. Overloaded operators have been defined for such operations such as
scalar addition, scalar, subtractions, and scalar multiplication. Note that data in
the math::matrix4 is stored in row major format. Since OpenGL expects matrices
passed into functions such as glMultMatrix* to be in column major format, the
programmer must transpose the matrix before sending the matrix to OpenGL.
Listing 7 shows math::matrix4 in action. Refer to Uber’s API documentation for
more information.

Listing 7. Uber’s Matrix Object
// declaring a matrix

math:: matrix4 ma;

// declaring a matrix , passing initializers for

// rotation matrix (3x3)

math:: matrix4 mb(

0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0

);

The Uber Graphics Library: An Overview · 11

// declaring a matrix , passing initializers for

//the entire matrix (4x4)

math:: matrix4 mc(

0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0

);

// setting the values of the rotation part of the matrix

ma.set(

0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0

);

// setting the values of the entire matrix

ma.set(

0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0

);

// setting the value of a cell in the matrix

//(0 indexed)

ma.set (2 , 3 , 666.0);

// matrix multiplication

ma = mb * mc;

// matrix addition

ma = mb + mc;

// matrix subtraction

ma = mb - mc;

// vector multiplication

math:: vector v;

ma = mb * v;

// outputting a matrix

std::cout << ma << std::endl;

// transposing the matrix

ma.transpose ();

// setting the matrix to the identity matrix

ma.set_identity ();

ma = math:: matrix4 :: IDENTITY;

12 · Nathan Cournia

// setting the translation part of the matrix

ma.set_translation (v);

// getting the translation part of the matrix

v = ma.get_translation ();

// compute the inverse of the rotation matrix

ma = mb.get_inverted_matrix ();

// create a rotation matrix n radians around an arbitrary axis

math:: vector axis;

real_t angle; //in radians

ma.from_angle_axis (angle , axis);

//get the axis and raidans around the axis the rotation

// matrix describes

ma.get_angle_axis (angle , axis);

//send the matrix to OpenGL

//note that you must first transpose the matrix

ma.transpose ();

glMultMatrixf (ma);

4.5.3 Quaternions. Quaternions in Uber are represented in the object math::quaternion.
Listing 8 shows math::quaternion in action. Refer to Uber’s API documentation for
more information.

Listing 8. Uber’s Quaternion Object
// declaring a quaternion

math:: quaternion qa;

// declaring a quaternion , initalizing x y z w

math:: quaternion qb (0.0 , 0.0 , 0.0 , 1.0);

// declaring a quaternion , initializing with a vector and w

math:: vector v;

real_t w;

math:: quaternion qb(v, w);

// setting the data in a quaternion

qa.set(v, w);

qa.set (0.0 , 0.0 , 0.0 , 1.0);

// finding the conjugate of a quaternion

qb = qa.conjugate ();

//find the inverse of a quaternion

qb = !qa;

The Uber Graphics Library: An Overview · 13

// normalizing a quaternion

qa.normalize ();

// finding the magnitude of a quaternion

real_t s = qa.magnitude ();

// setting a quaterion to the identity quaternion

qa.set_identity ();

qa = math:: quaternion :: IDENTITY;

// setting parts of the quaternion

qa.x(4.0);

qa.v(v);

// getting parts of the quaternion

real_t s = qa.x();

v = qa.v();

// matrix multiplication

v = qa * v;

// create a quaternion n radians around an arbitrary axis

math:: vector axis;

real_t angle; //in radians

qa.from_angle_axis (angle , axis);

//get the axis and raidans around the axis the

// quaternion describes

qa.get_angle_axis (angle , axis);

// interpolating between two quaternions

real_t percent ; // between 0.0 and 1.0

qa = math:: quaternion :: slerp (percent , qb , qc);

// outputting a quaternion

std::cout << q << std::endl;

// sending the quaternion to OpenGL

glMultMatrixf (qa.get_transposed_rotation_matrix ());

4.5.4 Helpers. Listing 9 demonstrates some of Uber’s useful math helper func-
tion. Refer to mathematics.h and Uber’s API documentation for further information
on Uber’s helper functions.

Listing 9. Uber’s Math Helper Functions
// return a random number between 0 and 1

real_t s;

s = math:: rand01 ();

// convert from radians to degrees

14 · Nathan Cournia

real_t deg , rad;

deg = math:: to_degrees (rad);

// convert from degrees to radians

real_t deg , rad;

rad = math:: to_radians (deg);

// determine if 2 numbers are equal ,

// accounting for precision error

double a, b;

if(math:: equals (a, b)) {

// equals

} else {

//not equals

}

//swap the value of 2 objects

double a, b;

math::swap(a, b);

// determine sign of a value

if(math::sign(a) < 0) {

//a is negative

} else {

//b is not negative

}

// determine if two values hold the same sign

if(math:: same_sign (a, b)) {

//a and b have same sign

} else {

//a and b’s signs differ

}

// check if a value is negative

if(math:: negative (a) {

//a is negative

} else {

//a is not negative

}

// check if a value is positive

if(math:: positive (a) {

//a is positive

} else {

//a is negative

}

The Uber Graphics Library: An Overview · 15

4.6 Utilities

Located in the utils namespace (utils.h) is a slew of useful helper functions. In
the following sections, we will cover some of those functions. Refer to Uber’s API
documentation for further information on Uber’s utility functions.

4.6.1 String Manipulation. Refer to Uber’s API documentation for further in-
formation on Uber’s utility functions.

4.6.2 File System Access. Refer to Uber’s API documentation for further infor-
mation on Uber’s utility functions.

4.6.3 File IO. Uber contains a simple mechanism for writing and reading from
binary streams. Given an object, struct, or type, Uber is capable of loading the
given object, struct or type from a binary stream or reading data from a binary
stream into the object, struct, or type in a single function call. Reading from a
binary stream is achieved through utils::read.

template <class T>

std:: istream & utils ::read(

std:: istream & stream ,

T& in)

Listing 10 contains an example of reading data from a binary stream into an arbi-
trary structure.

Listing 10. Uber’s File IO: Reading
//an arbitrary struct

typedef unsigned char byte;

struct tga_header

{

byte id_length;

byte color_map_type;

byte image_type;

byte color_map [5];

short x_origin;

short y_origin;

short width;

short height;

byte bpp;

byte image_descriptor;

};

// . . .

//open a file

std:: ifstream mystream ("myfile.tga");

// . . . perform error checking

// instantiate the header we want to read data into

tga_header header;

16 · Nathan Cournia

//read from the file

if(! utils::read(mystream , header)) {

// error. something went wrong while reading

//from the file.

} else {

// header has now been loaded with data from the file

}

Writing to a binary stream is achieved through utils::write.

template <class T>

std:: ostream & utils ::write(

std:: ostream & stream ,

T& out)

Listing 11 contains an example of writing data to a binary stream from an arbitrary
structure.

Listing 11. Uber’s File IO: Writing
//an arbitrary struct

typedef unsigned char byte;

struct tga_header

{

byte id_length;

byte color_map_type;

byte image_type;

byte color_map [5];

short x_origin;

short y_origin;

short width;

short height;

byte bpp;

byte image_descriptor;

};

// . . .

//open a file for writing

std:: ofstream mystream ("myfile.tga");

// . . . perform error checking

// instantiate the header we want to read data from

tga_header header;

// . . . load header full of the data we want to write

// write heaader to the file

if(! utils:: write(mystream , header)) {

// error. something went wrong while writing

//to the file.

} else {

The Uber Graphics Library: An Overview · 17

// header has now been written to the file

}

5. CREATING A DEMO

This section covers creating a demo in the Uber Graphics Library heirarchy. After
obtaining the the Uber source code from CVS, change directories to demos as fol-
lows:

cd demos

Here create a directory to store the files for your demo. For example, if you wish
to create a demo called mydemo type:

mkdir mydemo

Change your current directory to the directory you just created. You should now
place all files neccessary to run your demo in this directory. For example, if your
demo is only one file, mydemo.cpp, you would copy mydemo.cpp into the demos/my-
demo directory.

5.1 Setting Up the Build System

Now that all files are in the proper place, you must tell the build system, autoconf,
which files to build. Using our mydemo example, first create an automake file in
your demo directory. The name of the automake file should be Makefile.am. Listing
12 shows an example automake file for the mydemo example demo.

Listing 12. Example Demo automake File
require automake 1.6

AUTOMAKE_OPTIONS = 1.6

what follows bin_PROGRAMS are the names of

binaries that should be built

bin_PROGRAMS=mydemo

where we can find the uber source dir

UBER_SRC = ../../ src

include uber headers

INCLUDE = -I$(UBER_SRC)

each binary that is to be built has a _SOURCES line

this line contains all of the sources needed to build

the binary

mydemo_SOURCES = mydemo.cpp

pass flags from autoconf to automake

AM_CXXFLAGS = @CXXFLAGS@ @WERROR@

18 · Nathan Cournia

AM_LDFLAGS = @LDFLAGS@

each binary that is to be built has a _CXXFLAGS

this line contains all of the c++ flags

that will be sent to the c++ compiler as

each source file is compiled

mydemo_CXXFLAGS = $(INCLUDE) $(GL_CFLAGS) \

$(SDL_CFLAGS) $(FT2_CFLAGS)

each binary that is to be built has a _LDFLAGS

this line contains all of the linker flags

that will be sent to the liner

when the program is linked together

mydemo_LDADD = \

$(UBER_SRC)/ libuber.a \

@LIBS@ \

$(GL_LIBS) \

$(SDL_LIBS) \

$(FT2_LIBS)

The next step is to tell autoconf where it can find your new sources. To do this
first add your demo’s directory to the file demos/Makefile.am. Listing 13 shows an
example of this.

Listing 13. Telling automake to proccess your demo.
SUBDIRS = overview mydemo

We then tell autoconf to generate a makefile for the new demo. This is done by
editing configure.in in Uber’s root directory. In configure.in, add the demo as an
argument to AC OUTPUT (located near the bottom of the file.) Listing 14 shows
an example of this.

Listing 14. Telling autoconf to generate a Makefile for your demo.
AC_OUTPUT ([

Makefile

src/Makefile

demos/Makefile

demos/overview/Makefile

demos/mydemo/Makefile

])

Everything is now in place for your code to be built. To do so, simply change your
current directory to Uber’s root directory and type the following:

./bootstrap

./configure

make

Note that we ran bootstrap and configure because we made changes to those sys-
tems’ configuration files. This step is usually not neccessary during the normal
course of developing your software.

The Uber Graphics Library: An Overview · 19

5.2 Adding Demo Files to CVS

The final step to adding your demo to the Uber library is upload your additions.
To reach this goal change your current directory to demos and add your demo’s
directory to the CVS repository as follows:

cvs add mydemo

This will create the directory CVS in the mydemo directory. Next, change your
current directory to your demo’s directory and upload your new files to the CVS
repository as follows:

cd mydemo

cvs add Makefile.am mydemo.cpp

Only add Makefile.am and the source code of your demo! DO NOT run cvs
add * in your demo’s directory, as this may add unwanted files produced by the
build system.

The final step in uploading your demo is to commit your changes. To do this
change your current directory to Uber’s root directory, and type the following:

cvs commit

This will bring up a text editor asking you to descibe your additions to the CVS
repository. Type in a short description of your additions in the following format:

- First comment here.

- Second comment here.

Note that if you are on Clemson’s VR network, you may be asked to describe
your changes more than once. This is due to the fact that changes were made in
multiple directories (Uber’s root directory, demos, and mydemo).

6. USING UBER’S CVS

6.1 Downloading Uber

The Uber graphics libary can only be downloaded from CVS. You can download
the library through CVS on Clemson University’s VR network as follows:

cvs -d/pub/research/uber/cvsroot co uber

Off-campus via SSH:

cvs -dusername@rafiki.vr.clemson.edu:/pub/research/uber/cvsroot co uber

Where username is your login on Clemson University’s VR network.

20 · Nathan Cournia

6.2 Updating Your Working Directory

Once a working copy of Uber has been check out of the CVS repository, getting the
latest updates from the repository is as simple as:

cvs update -d

6.3 Upload (Committing) Changes to the CVS Repository

Once changes have been made to the local working copy of Uber, changes can be
uploaded to the CVS repository as follows:

cvs commit

Note that this command is sensitive to where it is being run from. If it is ran
from Uber’s root directory, CVS will recursively descend into subdiretories, com-
mitting any changes.

6.4 Adding Files

Add plain text files and directories can be acheived with:

cvs add <filename>

Binary files should be added with:

cvs add -kb <filename>

Note that this only schedules the file(s) to be added. To add the file(s) to the
repository run:

cvs commit

7. CONCLUSION

We have presented a brief overview of the Uber graphics library. We have by no
means covered all of its features. For a more in-depth look at the Uber library,
refer to Uber’s API documentation.

