
An OpenGL with wxWindows Tutorial

Andrew Van Pernis

Clemson University

A basic tutorial demonstrating how to use the wxWindows widget wxGLCanvas. The issues of
basic event handling and cross platform development are discussed.

Key Words and Phrases: wxWindows, OpenGL, cross platform, graphical user interface

1. INTRODUCTION

OpenGL provides the programmer with a great deal of flexibility for drawing graph-
ics to the screen, however a way to develop a strong graphical user interface is needed
to support the power provided by OpenGL. Many OpenGL implementations sup-
port GLUT (OpenGL Utility Toolkit), which is a simple windowing API. GLUT
lacks many of the features of more advanced GUI toolkits, and thus is not well
suited for development of complex user interfaces. A large number of GUI libraries
and APIs exist, but most are designed for a single hardware platform making it
difficult to write programs that can be used on any system. Finally, several GUI
APIs have been developed to be fully featured and cross platform. One of those is
wxWindows.

wxWindows consists of two parts an API and a set of libraries. The wxWindows
API defines a set of GUI widgets and utility functions in C++. The libraries are
implementations of that API for a specific platform using a native framework. For
example, wxWindows has three libraries available for Unix-based systems. The
first and most commonly used is wxGTK, which runs under X windows using the
GTK+ toolkit. wxMotif also runs under X, but uses the Motif toolset as its base.
The third version of wxWindows for Unix, wxX11, is based on the standard X
windows commands themselves. There are many other versions of wxWindows as
well, including libraries for Microsoft Windows and MacOS. Furthermore, the API
has been translated into other languages, such as Python, Perl, and BASIC. More
information about wxWindows, as well as the libraries and API, can be found at
the website, http://www.wxWindows.org.

In this paper, we will discuss a C++ program written using the wxWindows
API that displays an OpenGL drawing area. Some of the issues involved with
event handling will also be discussed. The program will also demonstrate the cross
platform nature of wxWindows, so we will discuss how portions of the code must
be developed to handle OpenGL on different platforms. Section 2 discusses some
of the basic implementation details needed to write a program using the OpenGL
and wxWindows APIs. Next, Section 3 covers the C++ class representing the
application. The class defining the main window and its behavior is explored in

E-mail: arakel@vr.clemson.edu
Web: http://www.vr.clemson.edu/˜arakel

c© 2003 Dr. Andrew Duchowski

Graphics Seminar Notes, Pages 1–21.

2 · Andrew Van Pernis

Section 4. We will discuss the heart of the program, the OpenGL drawing region,
in Section 5. Finally, Section 6 will give details about the OpenGL functions used
for drawing by the application. The source code for the entire program is given in
the appendices.

2. IMPLEMENTATION BASICS

In order to create a program with wxWindows, header directives will have to be
added to the program to specify which portions of the wxWindows API will be
used. All wxWindows programs have a basic set of files that need to be included.
These files can be seen in Listing 1. In order to use OpenGL, the include directives
for that API are required as well. First, we must specify that we will be adding the
wxWindows widget for OpenGL drawable regions by using the first line in Listing 2.
The remaining lines in Listing 2 give the directives that should be used for including
the OpenGL API. Because the header files are placed in different locations under
different operating sytems, directives defined by wxWindows are used to determine
the operating system and specify the correct location for the header files.

Listing 1. wxWindows include directives.
#include "wx/wxprec.h"

#ifdef __BORLANDC__

#pragma hdrstop

#endif

#ifndef WX_PRECOMP

#include "wx/wx.h"

#endif

Listing 2. OpenGL include directives.
#include "wx/glcanvas.h"

#ifdef __WXMAC__

#ifdef __DARWIN__

#include <OpenGL/gl.h>

#include <OpenGL/glu.h>

#else

#include <gl.h>

#include <glu.h>

#endif

#else

#include <GL/gl.h>

#include <GL/glu.h>

#endif

An OpenGL with wxWindows Tutorial · 3

3. APPLICATION CLASS

The first step in creating a wxWindows program is to develop a class to represent
the application. The default class wxApp is provided by the API, because some
changes need to made to that class we will derive a new class DemoApp from wxApp.

3.1 Application Class Declaration

Listing 3 shows the declaration for the class DemoApp. Because DemoApp inherits
from wxApp, the first thing to be done is to redefine OnInit. This method is used
to initialize the main window for the application, which will be an object of the
class DemoFrame, as discussed in Section 4. Therefore, a pointer to an object of
type DemoFrame is added as a member variable to the application class. Last, the
macro, DECLARE_APP, is used to create a set of forward declarations needed by the
wxWindows API.

Listing 3. DemoApp declaration block.
class DemoApp : public wxApp{

public:

bool OnInit(void);

private:

DemoFrame * m_main_window;

};

DECLARE_APP(DemoApp)

3.2 Application Class Implementation

The first part of the implementation of the class OnInit is the use of the macro
IMPLEMENT_APP(DemoApp). This macro is used as a compliment to the DECLARE_APP

macro from the application class declaration.
The definition of the method OnInit can be seen in Listing 4. OnInit first attempts

to create a new DemoFrame object. Because the DemoFrame object will be the main
window for the application, if it could not be created the method returns a value
of false, indicating the application should not continue. Once the main window has
been created, a call to its method Show is used to display it. Then, OnInit returns
a value of true indicating the main event loop for the application should begin.

4. MAIN WINDOW CLASS

wxWindows has a very robust event handling system, which we will use with the
class representing the main window of the application. The main window will
handle two events. The first is an event indicating that the program should exit.
This event will occur whenever the window manager generates an exit event (i.e.
the user clicked the close window button on the window border). The other event
the main window will handle is the idle event, indicating that no other events have
occurred and the application is idle.

4 · Andrew Van Pernis

Listing 4. Implementation of DemoApp::OnInit.
bool DemoApp :: OnInit(void){

// Create the main window

m_main_window = new DemoFrame(NULL , "wxWindows OpenGL Demo",

wxDefaultPosition ,

wxSize (720 ,480));

if (m_main_window == NULL)

return FALSE;

//Show the window

m_main_window ->Show(TRUE);

return TRUE;

}

4.1 Main Window Class Declaration

Because the main window will contain an OpenGL drawing region, a pointer to an
object of the class DemoGLCanvas, which is discussed in Section 5, is added to the
DemoFrame class as can be seen in Listing 5. Notice the macro DECLARE_EVENT_TABLE,
that macro is added to the protected portion of any class declaration that will be
using the event handling capabilities of wxWindows. The declaration also specifies
the prototypes for two event handling methods, OnExit and OnIdle. A constructor
is prototyped for the class as well.

Listing 5. DemoFrame declaration block.
class DemoFrame : public wxFrame{

public:

DemoFrame(wxFrame *frame , const wxString & title ,

const wxPoint & pos = wxDefaultPosition ,

const wxSize & size = wxDefaultSize ,

long style = wxDEFAULT_FRAME_STYLE);

void OnExit(wxCloseEvent & event);

void OnIdle(wxIdleEvent & event);

private:

DemoGLCanvas * m_canvas;

protected:

DECLARE_EVENT_TABLE ()

};

4.2 Main Window Class Implementation

The constructor for DemoFrame makes use of a constructor inherited from the class
wxFrame, as a basis for initializing the main window. Next a DemoGLCanvas object
is created. The size of the main window is set to 720 × 480, but the size of the
DemoGLCanvas widget is not specified, rather it is set to fill the available space within

An OpenGL with wxWindows Tutorial · 5

Listing 6. DemoFrame constructor implementation.
DemoFrame :: DemoFrame(wxFrame *parent , const wxString & title ,

const wxPoint & pos , const wxSize & size ,

long style):

wxFrame(parent , -1, title , pos , size , style){

int width , height;

// Define attributes for the GL drawable

#ifdef __WXMSW__

int * attributes = NULL;

#else

int attributes [] = { WX_GL_RGBA , WX_GL_MIN_RED , 1,

WX_GL_MIN_GREEN , 1, WX_GL_MIN_BLUE , 1,

WX_GL_DEPTH_SIZE , 1, WX_GL_DOUBLEBUFFER ,

#ifdef __WXMAC__

GL_NONE };

#else

None};

#endif

#endif

// Create the GL drawable

m_canvas = new DemoGLCanvas(this , -1, wxDefaultPosition ,

wxDefaultSize , 0, "DemoGLCanvas",

attributes);

m_canvas ->GetClientSize (&width , & height);

// Initialize OpenGL

GL_Init(width , height);

}

the window. The OpenGL initialization routine needs to know the exact size of
the drawable region, so a query method is used to obtain the size and pass that
information to the initialization routine.

After the main window has been created, events need to be connected to the
main window. In the declaration of DemoFrame, we specified two event handlers. A
set of macros are used to define an event table, which will link the specific events
to their handlers. Listing 7 shows the event table macros used for the DemoFrame

class. The first macro, BEGIN_EVENT_TABLE, specifies the start of an event table for
the class given as the first parameter, in this case DemoFrame. The second parameter
is used to specify the parent of the first class, because the event table of the parent
will be used to form a basis for the child’s event table. The macros EVT_CLOSE and
EVT_IDLE connect the event handling methods of DemoFrame to their events. Each
event in wxWindows has a corresponding connection macro. The END_EVENT_TABLE

macro simply declares the end of the current event table.
The exit event handler’s implementation can be seen in Listing 8. The Destroy

methods for both the OpenGL canvas widget and the main window are used to

6 · Andrew Van Pernis

Listing 7. Event table for the class DemoFrame.
BEGIN_EVENT_TABLE(DemoFrame , wxFrame)

EVT_CLOSE(DemoFrame :: OnExit)

EVT_IDLE(DemoFrame :: OnIdle)

END_EVENT_TABLE ()

destroy them in order. The Destroy method for any wxWindows widget should be
used in place of the delete operator, because wxWindows delays the deletion of
some widgets until all events have been processed.

Listing 8. Implementation of DemoFrame::OnExit.
void DemoFrame :: OnExit(wxCloseEvent & event){

m_canvas ->Destroy ();

Destroy ();

}

Idle event handling is done with the method found in Listing 9. First, the idle
event handler increments a global variable indicating the current frame number,
which is useful for animation. Next, the DemoGLCanvas widget calls its method Draw

to draw the scene using the updated frame number. The key to the idle event
handler is the final step. When an event handling function finishes, wxWindows
considers that event to be processed entirely. In order to continuously increment
the frame number an idle event needs to occur whenever the application is idle. The
call to the method RequestMore by the wxIdleEvent object passed as a parameter
indicates that more idle event processing is needed. Thus, after the event handler
has finished, an idle event will be generated almost immediately, creating a con-
tinuous stream of idle events. Other events will appear within this stream as they
occur, so it may be necessary for an event with a lengthy handler to increment the
current frame number in order to maintain a constant frame rate.

5. OPENGL DRAWABLE AREA CLASS

The OpenGL drawing area is the main focus of the application, and therefore
the most complex class involved. Four event handlers are needed for this class. A
method to render a scene into the OpenGL drawing region is also needed. Section 6
will discuss the function calls used for drawing.

5.1 OpenGL Drawable Area Class Declaration

Besides the event handling methods, the class DemoGLCanvas will have a basic con-
structor and a helping method to perform OpenGL drawing. No member variables
are needed for the class, but the protected section must have an event table decla-
ration using the DECLARE_EVENT_TABLE macro. The event table’s construction can be
seen in Listing 11. Listing 10 shows the complete declaration for the DemoGLCanvas

class.

An OpenGL with wxWindows Tutorial · 7

Listing 9. Implementation of DemoFrame::OnIdle.
void DemoFrame :: OnIdle(wxIdleEvent & event){

// Increment the time step

time_step ++;

// Avoid overflowing the time step variable

if (time_step >= MAX_STEPS)

time_step = 0;

// Redraw the OpenGL canvas

m_canvas ->Draw();

// Request more idle events otherwise the main loop will

// consider idle events to be processed until a non -idle

// event is generated

event.RequestMore ();

}

Listing 10. DemoGLCanvas declaration block.
class DemoGLCanvas : public wxGLCanvas{

public:

DemoGLCanvas(wxWindow *parent , const wxWindowID = -1,

const wxPoint & pos = wxDefaultPosition ,

const wxSize & size = wxDefaultSize ,

long style = 0,

const wxString & name = "DemoGLCanvas",

int * gl_attrib = NULL);

// Event handling

void OnPaint(wxPaintEvent & event);

void OnSize(wxSizeEvent & event);

void OnEraseBackground(wxEraseEvent & event);

void OnChar(wxKeyEvent & event);

// Helper functions

void Draw(void);

protected:

DECLARE_EVENT_TABLE ()

};

8 · Andrew Van Pernis

Listing 11. Event table for the class DemoGLCanvas.
BEGIN_EVENT_TABLE(DemoGLCanvas , wxGLCanvas)

EVT_SIZE(DemoGLCanvas :: OnSize)

EVT_PAINT(DemoGLCanvas :: OnPaint)

EVT_CHAR(DemoGLCanvas :: OnChar)

EVT_ERASE_BACKGROUND(DemoGLCanvas :: OnEraseBackground)

END_EVENT_TABLE ()

5.2 OpenGL Drawable Area Class Implementation

As can be seen in Listing 12, the constructor starts by using a constructor inherited
from it’s parent, wxGLCanvas. This inherited constructor will use the attributes
passed in as a parameter to create an OpenGL context for the widget. Once the
constructor from wxGLCanvas is finished, the DemoGLCanvas constructor will continue
by grabbing focus for the keyboard through the method SetFocus. By default, the
main window would have keyboard focus, but as can be seen below, this widget
will have the event handler for keyboard events. The last thing to be done by the
constructor is to make the OpenGL context for the widget current, but this should
not be done until the widget has been realized. In order to insure that the OpenGL
drawing area has been realized, a call is made to its parent’s Show method.

Listing 12. DemoGLCanvas constructor implementation.
DemoGLCanvas :: DemoGLCanvas(wxWindow *parent , wxWindowID id ,

const wxPoint & pos ,

const wxSize & size , long style ,

const wxString & name ,

int * gl_attrib):

wxGLCanvas(parent , id , pos , size , style , name , gl_attrib){

//Set the canvas to receive keyboard input

SetFocus ();

// Check to make sure the main window has been shown

if (parent != NULL)

parent ->Show(TRUE);

//Set the canvas to be the current GL drawable

SetCurrent ();

}

5.2.1 Resize Event Handler. Any time the OpenGL drawing region or the win-
dow containing it changes size, a size event will be generated, triggering the resize
event handler. Listing 13 displays the implementation of that event handler. First,
the event handler for size events from wxGLCanvas is used. This is another undoc-
umented part of wxGLCanvas, which will handle changing the size of the widget. If

An OpenGL with wxWindows Tutorial · 9

Listing 13. Implementation of DemoGLCanvas::OnSize.
void DemoGLCanvas :: OnSize(wxSizeEvent & event){

//Use the parent class size event handler

wxGLCanvas :: OnSize(event);

// Check to see if there ’s a GL context for drawing

#ifndef __WXMOTIF__

if (! GetContext ())

return;

#endif

// Resize the GL viewport

int width , height;

GetClientSize (&width , & height);

SetCurrent ();

glViewport (0, 0, width , height);

// Adjust the perspective matrix

glMatrixMode(GL_PROJECTION);

glLoadIdentity ();

gluPerspective(VIEW_ANGLE , (float)width /(float)height ,

NEAR_CLIP , FAR_CLIP);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity ();

}

a context exists for the widget, the new size of the widget will be determined and
used to resize the OpenGL viewport. After that, the perspective matrix is changed
to reflect the new aspect ratio of the widget.

5.2.2 Erase Background Event Handler. Technically, a method for handling
erase background events is not needed, because one is already defined for the parent
class of DemoGLCanvas. Unfortunately, that event handler may cause the widget to
flicker as the background is erased. Because the widget is an OpenGL drawing
area, the flicker can be eliminated by having the erase background event handler
do nothing and the paint event handler use glClear to erase the color buffer, which
is equivalent to erasing the background.

Listing 14. Implemenation of DemoGLCanvas::OnEraseBackground.
void DemoGLCanvas :: OnEraseBackground(wxEraseEvent & event){

//Do nothing , but we need to define this to avoid flashing

// caused by parent class ’s event handler for erase

// background events

}

10 · Andrew Van Pernis

5.2.3 Paint Event Handler. The paint event handler is also quite simple. First
the method creates a wxPaintDC object, which is a required step for all paint event
handlers. In this case, the wxPaintDC object will not be used. Next, the paint event
handler uses the method Draw to perform OpenGL rendering.

Listing 15. Implementation of DemoGLCanvas::OnPaint.
void DemoGLCanvas :: OnPaint(wxPaintEvent & event){

//This is a placeholder , but needs to be created as part of

//the paint event handler

wxPaintDC paint_context(this);

//Draw using OpenGL

Draw();

}

Before drawing to the OpenGL widget, it is important to check and make sure
an OpenGL context exists. This can be done with the undocumented method
GetContext, which returns a pointer to the wxGLContext associated with the drawing
region. Note, that the class wxGLContext is also undocumented. Also, the GetContext

method is currently not available in the Motif version of wxWindows. Once it is
determined that a context is available for drawing, the SetCurrent method make
that the current context for OpenGL commands. The function GL_Draw executes
all of the actual rendering commands. Finally, because the OpenGL context was
created using double buffering, a call to the method SwapBuffers moves the back
buffer to the front and displays it. The source code for the helping method Draw

can be seen in Listing 16.

Listing 16. Implementation of DemoGLCanvas::Draw.
void DemoGLCanvas ::Draw(void){

// Check to see if there ’s a GL context for drawing

#ifndef __WXMOTIF__

if (! GetContext ())

return;

#endif

//Use that context to draw

SetCurrent ();

GL_Draw ();

SwapBuffers ();

}

An OpenGL with wxWindows Tutorial · 11

5.2.4 Keyboard Input Event Handler. Because the window manager may or may
not add a close window button to the main window, a way to exit the application is
needed. The key event handler will check to see if one the keys, escape, Q, or X, has
been pressed. If any one of them has been pressed then the program should exit.
To do so, the Close method needs to be called by the object representing the main
window, which is retreived with the method, GetParent, as the main window is the
parent of the OpenGL drawing region. If any other key is pressed the application
should do nothing. A call to the Skip method for the wxKeyEvent object indicates
that this event is not needed, and thus no other event handler should process it.

Listing 17. Implementation of DemoGLCanvas::OnChar.
void DemoGLCanvas :: OnChar(wxKeyEvent & event){

switch(event.KeyCode ()) {

case WXK_ESCAPE:

case ’q’: case ’Q’:

case ’x’: case ’X’:

GetParent ()->Close ();

break;

default:

event.Skip();

return;

}

}

6. OPENGL DRAWING FUNCTIONS

Two functions are used for OpenGL drawing. The first, GL_Init, is a basic ini-
tialization routine. As can be seen in Listing 18, first the function sets several
OpenGL state variables. Next, the perspective matrix is set using the width and
height parameters passed into the function. Finally, the modelview matrix is set to
the identity.

The second OpenGL drawing function, GL_Draw, performs the rendering of a
simple animated scene. The function begins by setting up a camera for viewing
the scene. Then a rectangle is drawn so that it ripples using a sine wave. The
rippling effect is animated through the use of the time step variable discussed in
4.2. Listing 19 shows the details of the rendering function. It is important to note
that a value for Pi is used in the computation of the sine wave function, while some
system math libraries include a definition of constant representing Pi, others do
not. The preprocessor statements shown in Listing 20 check to see if a Pi constant
exists, creating it if it does not.

7. CONCLUSION

It is easy to create a basic OpenGL application using wxWindows. Furthermore,
wxWindows provides the advantages of being cross platform and extensible. Finally,
unlike GLUT, wxWindows is a fully functional GUI toolkit, making it a good choice
for developing with OpenGL.

12 · Andrew Van Pernis

Listing 18. OpenGL initialization routine.
void GL_Init(int width , int height){

// Basic GL initialization

glClearColor (0.2 , 0.2 , 0.2 , 0);

glEnable(GL_DEPTH_TEST);

glEnable(GL_NORMALIZE);

// Enable GL optimizations

glEnable(GL_CULL_FACE);

// Initialize the GL matrices

glMatrixMode(GL_PROJECTION);

glLoadIdentity ();

gluPerspective(VIEW_ANGLE , (float)width /(float)height ,

NEAR_CLIP , FAR_CLIP);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity ();

}

REFERENCES

Braem, F. 2001-2002. wxWindows 2: Programming cross-platform GUI applications in C++.
http://users.skynet.be/saw/download/wxWindows/wxTutorial.pdf.

Shreiner, D., Ed. 2000. OpenGL Reference Manual , Third ed. Addison-Wesley. The Official

Reference Document to OpenGL, Version 1.2.

Woo, M., Neider, J., Davis, T., and Shreiner, D. 1999. OpenGL Programming Guide, Third
ed. Addison-Wesley. The Official Guide to Learning OpenGL, Version 1.2.

An OpenGL with wxWindows Tutorial · 13

Listing 19. OpenGL rendering function.
void GL_Draw(void){

float height , x;

int i;

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

//Set the camera

glPushMatrix ();

gluLookAt (5.0 , 10.0 , 5.0 , 5.0 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0);

// Transform the quad

glPushMatrix ();

glTranslatef (5.0 , 0.0 , 0.0);

glScalef (8.0 , 2.0 , 6.0);

glTranslatef (-0.5 , 0.0 , 0.5);

//Draw the rippling quad

glColor4f (1.0 , 1.0 , 1.0 , 1.0);

glBegin(GL_QUAD_STRIP);

for (i=0; i<= RIPPLE_STRIPS ; i++){

height = sin(4* M_PI *(((time_step+i)%RIPPLE_STRIPS)/

(float)RIPPLE_STRIPS));

x = (float)i/(float)RIPPLE_STRIPS;

if (x > 1.0)

x = 1.0;

glTexCoord2f(x , 1.0);

glVertex3f(x, height *0.2 , -1.0);

glTexCoord2f(x , 0.0);

glVertex3f(x, height *0.2 , 0.0);

}

glEnd ();

glPopMatrix ();

//Pop the camera matrix (technically I don’t have to do

//this , but I might want to add flight controls one day)

glPopMatrix ();

}

Listing 20. Cross platform Pi definition.
#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

14 · Andrew Van Pernis

APPENDIX

A. WXWINDOWS DEMO.H

1 //File: wxWindows_demo.h

2 // Author : Andrew Van Pernis <arakel@vr.clemson.edu >

3

4 #ifndef UBER_WXWINDOWS_DEMO_H

5 #define UBER_WXWINDOWS_DEMO_H 1

6

7 // OpenGL drawable region class

8 class DemoGLCanvas : public wxGLCanvas{

9 public:

10 DemoGLCanvas(wxWindow *parent , const wxWindowID = -1,

11 const wxPoint & pos = wxDefaultPosition ,

12 const wxSize & size = wxDefaultSize ,

13 long style = 0,

14 const wxString & name = "DemoGLCanvas",

15 int * gl_attrib = NULL);

16

17 // Event handling

18 void OnPaint(wxPaintEvent & event);

19 void OnSize(wxSizeEvent & event);

20 void OnEraseBackground(wxEraseEvent & event);

21 void OnChar(wxKeyEvent & event);

22

23 // Helper functions

24 void Draw(void);

25 protected:

26 DECLARE_EVENT_TABLE ()

27 };

28

29 //Main application window class

30 class DemoFrame : public wxFrame{

31 public:

32 DemoFrame(wxFrame *parent , const wxString & title ,

33 const wxPoint & pos = wxDefaultPosition ,

34 const wxSize & size = wxDefaultSize ,

35 long style = wxDEFAULT_FRAME_STYLE);

36

37 // Event handling

38 void OnExit(wxCloseEvent & event);

39 void OnIdle(wxIdleEvent & event);

40 private:

41 DemoGLCanvas * m_canvas;

42 protected:

43 DECLARE_EVENT_TABLE ()

44 };

45

46 // Application class

47 class DemoApp : public wxApp{

An OpenGL with wxWindows Tutorial · 15

48 public:

49 bool OnInit(void);

50 private:

51 DemoFrame * m_main_window;

52 };

53 DECLARE_APP(DemoApp)

54

55 #endif

B. WXWINDOWS DEMO.CPP

1 //File: wxWindows_demo.cpp

2 // Author : Andrew Van Pernis <arakel@vr.clemson.edu >

3

4 // wxWindows includes

5 #include "wx/wxprec.h"

6 #ifdef __BORLANDC__

7 #pragma hdrstop

8 #endif

9

10 #ifndef WX_PRECOMP

11 #include "wx/wx.h"

12 #endif

13

14 #if ! wxUSE_GLCANVAS

15 #error Please enable OpenGL support for wxWindows.

16 #endif

17

18 // OpenGL includes

19 #include "wx/glcanvas.h"

20 #ifdef __WXMAC__

21 #ifdef __DARWIN__

22 #include <OpenGL/gl.h>

23 #include <OpenGL/glu.h>

24 #else

25 #include <gl.h>

26 #include <glu.h>

27 #endif

28 #else

29 #include <GL/gl.h>

30 #include <GL/glu.h>

31 #endif

32

33 // Application includes

34 #include "wxWindows_demo.h"

35 #include "draw.h"

36 #include <iostream >

37

38 // Application class definitions

39 IMPLEMENT_APP(DemoApp)

40

16 · Andrew Van Pernis

41 bool DemoApp :: OnInit(void){

42

43 // Create the main window

44 m_main_window = new DemoFrame(NULL , "wxWindows OpenGL Demo",

45 wxDefaultPosition ,

46 wxSize (720 ,480));

47 if (m_main_window == NULL)

48 return FALSE;

49

50 //Show the window

51 m_main_window ->Show(TRUE);

52 return TRUE;

53 }

54

55 //Main window class definitions

56 BEGIN_EVENT_TABLE(DemoFrame , wxFrame)

57 EVT_CLOSE(DemoFrame :: OnExit)

58 EVT_IDLE(DemoFrame :: OnIdle)

59 END_EVENT_TABLE ()

60

61 DemoFrame :: DemoFrame(wxFrame *parent , const wxString & title ,

62 const wxPoint & pos , const wxSize & size ,

63 long style):

64 wxFrame(parent , -1, title , pos , size , style){

65 int width , height;

66

67 // Define attributes for the GL drawable

68 #ifdef __WXMSW__

69 int * attributes = NULL;

70 #else

71 int attributes [] = { WX_GL_RGBA , WX_GL_MIN_RED , 1,

72 WX_GL_MIN_GREEN , 1, WX_GL_MIN_BLUE , 1,

73 WX_GL_DEPTH_SIZE , 1, WX_GL_DOUBLEBUFFER ,

74 #ifdef __WXMAC__

75 GL_NONE };

76 #else

77 None};

78 #endif

79 #endif

80

81 // Create the GL drawable

82 m_canvas = new DemoGLCanvas(this , -1, wxDefaultPosition ,

83 wxDefaultSize , 0, "DemoGLCanvas",

84 attributes);

85 m_canvas ->GetClientSize (&width , & height);

86

87 // Initialize OpenGL

88 GL_Init(width , height);

89 }

90

91 void DemoFrame :: OnExit(wxCloseEvent & event){

An OpenGL with wxWindows Tutorial · 17

92 m_canvas ->Destroy ();

93 Destroy ();

94 }

95

96 void DemoFrame :: OnIdle(wxIdleEvent & event){

97

98 // Increment the time step

99 time_step ++;

100

101 // Avoid overflowing the time step variable

102 if (time_step >= MAX_STEPS)

103 time_step = 0;

104

105 // Redraw the OpenGL canvas

106 m_canvas ->Draw ();

107

108 // Request more idle events otherwise the main loop will

109 // consider idle events to be processed until a non -idle

110 // event is generated

111 event.RequestMore ();

112 }

113

114

115 // OpenGL drawing region definitions

116 BEGIN_EVENT_TABLE(DemoGLCanvas , wxGLCanvas)

117 EVT_SIZE(DemoGLCanvas :: OnSize)

118 EVT_PAINT(DemoGLCanvas :: OnPaint)

119 EVT_CHAR(DemoGLCanvas :: OnChar)

120 EVT_ERASE_BACKGROUND(DemoGLCanvas :: OnEraseBackground)

121 END_EVENT_TABLE ()

122

123 DemoGLCanvas :: DemoGLCanvas(wxWindow *parent , wxWindowID id ,

124 const wxPoint & pos ,

125 const wxSize & size , long style ,

126 const wxString & name ,

127 int * gl_attrib):

128 wxGLCanvas(parent , id , pos , size , style , name , gl_attrib){

129

130 //Set the canvas to receive keyboard input

131 SetFocus ();

132

133 // Check to make sure the main window has been shown

134 if (parent != NULL)

135 parent ->Show(TRUE);

136

137 //Set the canvas to be the current GL drawable

138 SetCurrent ();

139 }

140

141 void DemoGLCanvas :: OnPaint(wxPaintEvent & event){

142

18 · Andrew Van Pernis

143 //This is a placeholder , but needs to be created as part of

144 //the paint event handler

145 wxPaintDC paint_context(this);

146

147 //Draw using OpenGL

148 Draw ();

149 }

150

151 void DemoGLCanvas :: OnSize(wxSizeEvent & event){

152

153 //Use the parent class size event handler

154 wxGLCanvas :: OnSize(event);

155

156 // Check to see if there ’s a GL context for drawing

157 #ifndef __WXMOTIF__

158 if (! GetContext ())

159 return;

160 #endif

161

162 // Resize the GL viewport

163 int width , height;

164 GetClientSize (&width , & height);

165 SetCurrent ();

166 glViewport (0, 0, width , height);

167

168 // Adjust the perspective matrix

169 glMatrixMode(GL_PROJECTION);

170 glLoadIdentity ();

171 gluPerspective(VIEW_ANGLE , (float)width /(float)height ,

172 NEAR_CLIP , FAR_CLIP);

173 glMatrixMode(GL_MODELVIEW);

174 glLoadIdentity ();

175 }

176

177 void DemoGLCanvas :: OnEraseBackground(wxEraseEvent & event){

178 //Do nothing , but we need to define this to avoid flashing

179 // caused by parent class ’s event handler for erase

180 // background events

181 }

182

183 void DemoGLCanvas :: OnChar(wxKeyEvent & event){

184 switch(event.KeyCode ()) {

185 case WXK_ESCAPE:

186 case ’q’: case ’Q’:

187 case ’x’: case ’X’:

188 GetParent()->Close ();

189 break;

190 default:

191 event.Skip ();

192 return;

193 }

An OpenGL with wxWindows Tutorial · 19

194 }

195

196 void DemoGLCanvas ::Draw(void){

197

198 // Check to see if there ’s a GL context for drawing

199 #ifndef __WXMOTIF__

200 if (! GetContext ())

201 return;

202 #endif

203

204 //Use that context to draw

205 SetCurrent ();

206 GL_Draw ();

207 SwapBuffers ();

208 }

C. DRAW.H

1 //File: draw.h

2 // Author : Andrew Van Pernis <arakel@vr.clemson.edu >

3

4 #ifndef UBER_WXWINDOWS_DEMO_DRAW_H

5 #define UBER_WXWINDOWS_DEMO_DRAW_H 1

6

7 // Constants

8 #define VIEW_ANGLE 45.0

9 #define NEAR_CLIP 0.1

10 #define FAR_CLIP 100.0

11 #define RIPPLE_STRIPS 360

12 #define MAX_STEPS (RIPPLE_STRIPS *16)

13

14 // Globals

15 extern int time_step;

16

17 // Prototypes for standard OpenGL functions

18 void GL_Init(int width , int height);

19 void GL_Draw(void);

20

21 #endif

D. DRAW.CPP

1 //File: draw.cpp

2 // Author : Andrew Van Pernis <arakel@vr.clemson.edu >

3

4 // OpenGL includes

5 #include "wx/glcanvas.h"

6 #ifdef __WXMAC__

7 #ifdef __DARWIN__

8 #include <OpenGL/gl.h>

9 #include <OpenGL/glu.h>

10 #else

20 · Andrew Van Pernis

11 #include <gl.h>

12 #include <glu.h>

13 #endif

14 #else

15 #include <GL/gl.h>

16 #include <GL/glu.h>

17 #endif

18

19 // Application includes

20 #include <math.h>

21 #include "draw.h"

22

23 // Constants

24 #ifndef M_PI

25 #define M_PI 3.14159265358979323846

26 #endif

27

28 // Global variables

29 int time_step = 0;

30

31 // Functions

32 void GL_Init(int width , int height){

33

34 // Basic GL initialization

35 glClearColor (0.2 , 0.2 , 0.2 , 0);

36 glEnable(GL_DEPTH_TEST);

37 glEnable(GL_NORMALIZE);

38

39 // Enable GL optimizations

40 glEnable(GL_CULL_FACE);

41

42 // Initialize the GL matrices

43 glMatrixMode(GL_PROJECTION);

44 glLoadIdentity ();

45 gluPerspective(VIEW_ANGLE , (float)width /(float)height ,

46 NEAR_CLIP , FAR_CLIP);

47 glMatrixMode(GL_MODELVIEW);

48 glLoadIdentity ();

49 }

50

51 void GL_Draw(void){

52 float height , x;

53 int i;

54 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

55

56 //Set the camera

57 glPushMatrix ();

58 gluLookAt (5.0 , 10.0 , 5.0 , 5.0 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0);

59

60 // Transform the quad

61 glPushMatrix ();

An OpenGL with wxWindows Tutorial · 21

62 glTranslatef (5.0 , 0.0 , 0.0);

63 glScalef (8.0 , 2.0 , 6.0);

64 glTranslatef (-0.5 , 0.0 , 0.5);

65

66 //Draw the rippling quad

67 glColor4f (1.0 , 1.0 , 1.0 , 1.0);

68 glBegin(GL_QUAD_STRIP);

69 for (i=0; i<= RIPPLE_STRIPS ; i++){

70 height = sin(4* M_PI *(((time_step+i)% RIPPLE_STRIPS)/

71 (float)RIPPLE_STRIPS));

72 x = (float)i/(float)RIPPLE_STRIPS;

73 if (x > 1.0)

74 x = 1.0;

75 glTexCoord2f(x , 1.0);

76 glVertex3f(x, height *0.2 , -1.0);

77 glTexCoord2f(x , 0.0);

78 glVertex3f(x, height *0.2 , 0.0);

79 }

80 glEnd ();

81 glPopMatrix ();

82

83 //Pop the camera matrix (technically I don’t have to do

84 //this , but I might want to add flight controls one day)

85 glPopMatrix ();

86 }

